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Abbreviations: WAT: white adipose tissue; CLS: crown-like 
structures; ATMs: adipose tissue macrophages; sWAT: subcutaneous 
adipose tissue

Introduction
Chronic low-grade inflammation has been tightly correlated 

with obesity and its several complications.1–4 In a pioneering study, 
Weisberg et al.,4 showed that the macrophage content of adipose 
tissue correlated positively with BMI and adiposity. Macrophages 
can be classified into two major categories: classically activated M1 
macrophages and alternatively activated M2 macrophages. With 
regards to adipose tissue in humans, the obese phenotype is primarily 
characterized by the presence of M1 macrophages, whereas the lean 
phenotype is characterized by M2 macrophages. M2 macrophages 
produce anti-inflammatory cytokines such as IL-4, IL-10, and IL-
13, promote remodeling, efferocytosis, and improve systemic insulin 
sensitivity.2 On the other hand, M1 macrophages are known to secrete 
proinflammatory cytokines such as IL-6, TNFa and MCP1, which can 
lead to inflammation and impaired insulin signaling.2 Macrophages 
will notably generate necrosis in obese adipose tissue, resulting in 
the formation of bodies of aggregated macrophages around dead 
adipocytes that have been termed crown-like structures (CLS).3

Adipose tissue, though traditionally regarded as a depot for energy 
storage, has been increasingly acknowledged as an endocrine organ 
due to its secretion of cytokines and adipokines and the modulatory 
role it possesses in metabolism. Macrophages play a significant role 
in regulating adipose tissue function in both normal and pathological 
settings. In addition to conventional functions such as clearing 
apoptotic cellular debris and participating in tissue immune function, 
adipose tissue macrophages (ATMs) serve an important function 
in lipid buffering. Obesity-induced inflammation, characterized by 
an elevated number of proinflammatory macrophages in adipose 
tissue, has been suggested to contribute to systemic insulin resistance 
and other obesity comorbidities.3 The otherwise physiologically 
healthy role of macrophages is transformed into a pathological and 
dysfunctional phenotype which contributes to and exacerbates the 
inflammatory state during obesity. Immunohistochemical analysis of 

adipose tissue has demonstrated a high percentage of cells expressing 
the macrophage marker F4/80, and this was furthermore positively 
correlated with both adipocyte size and body mass.4

Although it has been more than a decade since the seminal study 
by Weisberg et al.,4 describing the infiltration of macrophages in 
adipose tissue, there are still many questions which remain to be 
answered.4 For instance, elucidation of the origin of ATMs in lean 
and obese conditions could benefit present understanding of the root 
cause of macrophage induced pathogenesis in adipose tissue. Are the 
pathological macrophages ordinarily resident in adipose tissue, or 
recruited by certain external cues? A plethora of animal and human 
studies have been performed in the last decade to unravel the mystery 
of metabolic dysregulation in adipose tissue. A new and promising 
explanation is the switching of macrophages within adipose tissue.

The phenomenon of macrophage switching is regulated by 
various endogenous molecules such as RBP4 proteins and exogenous 
dietary components. For example, Omega-3 PUFA drives the cellular 
phenotype towards M2 ATMs.5,6 Resolvin 1 (DHA derived lipid 
mediators) reduces ATM accumulation, and induces a shift towards 
M2 polarization in obese mice.6,7 Macrophage recruitment and 
switching are also influenced by other immune cells. T-regulatory cells 
promote M2 polarization by secreting anti-inflammatory mediators8,9 
CD8+ T cells contribute in recruitment and differentiation of ATMs.10 
Eosinophils contributes to M2 polarization,11–13 while neutrophils 
and mast cells in obese conditions are associated with inflammation 
possibly ATM recruitment.6 Macrophage infiltration increase lipolysis 
in WAT and impairs the liver’s carbohydrate and lipid metabolism in 
several ways.14 A recent cohort study with 65 subjects demonstrated 
that non-classical monocytes are positively associated with ATM lipid 
content.15

A variety of environmental, chemical, and biological factors play 
a role in determining the extent and impact of macrophage infiltration 
within adipose tissue. In a randomized open labeled study on 13 
women, it was suggested that Phosphatidylcholine and deoxycholate 
injection increases the presence of crown like structures and degree 
of macrophage infiltration in subcutaneous abdominal fat, and 
thereby reduces abdominal fat volume and thickness by inducing 
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Abstract

The development of Insulin resistance in obesity is associated with infiltration of immune 
cells in white adipose tissue (WAT). Especially macrophage infiltration in WAT is known 
to produce several proinflmmatory cytokines which induces the state of inflammation and 
impairs the insulin signaling and related pathways. Several animal and human studies have 
been conducted to unravel the mystery of metabolic dysregulation in adipose tissue because 
of chronic inflammation. A new and promising explanation is the switching of macrophages 
within WAT between M1 and M2 phenotype. In this short review, we addressed the recent 
advances in macrophage switch concept to explain the dysregulation of adipose tissue.

Keywords: macrophages, adipose tissue, inflammation, obesity, metabolic syndrome

MOJ Immunology

Research Article Open Access



Macrophages switch: the fate of adipose tissue in obesity 2
Copyright:

©2016 Wankhade et al.

Citation: Wankhade UD, Saraf MK, Shen M. Macrophages switch: the fate of adipose tissue in obesity. MOJ Immunol. 2016;3(6):11‒12. 
DOI: 10.15406/moji.2016.03.00109

adipocyte necrosis.16 A randomized, double-blind, placebo-controlled 
parallel-group study on 38 subjects demonstrated that valsartan, a 
renin-angiotensin system inhibitor,  decreases adipocyte size and is 
associated with reduced degree of macrophage infiltration.17 Injection 
of lipostabil, a phosphatidylcholine containing substance, results in a 
distinct inflammatory reaction as demonstrated by the formation of 
macrophages and foam cells in the affected fat tissue.18

Subcutaneous adipose tissue (sWAT) from burn victims exhibits 
CD68 positive macrophages, multiple fat droplets, and a greater 
abundance of mitochondria. Moreover tissue cytokines IL-6, IL-8, 
IL-13, IL-1a, IL-1b, MCP-1, and TNF-α were all significantly greater 
in the sWAT of burned vs healthy subjects, providing an ostensible 
link between morphological/functional changes in sWAT and tissue 
inflammation.19 Arachidonic acid is elevated in sWAT, and correlate 
strongly with macrophage presence in obese women with type 2 
diabetes mellitus.20 Infusion of glucose-dependent insulinotropic 
peptide, a gut hormone, triggers a crosstalk between adipocytes and 
macrophages involving MCP-1, initiating a state of low grade of 
adipose tissue inflammation.21

Despite being a primary focus of recent obesity research, the role 
of adipose tissue derived circulating metabolites, stressors during the 
pathological state, and the ultimate origin of diseased ATMs are still not 
completely understood. In the future, characterization of the adipose 
resident population of macrophages and its subsets using specific 
cellular markers will help to distinguish metabolically functional and 
dysfunctional ATMs. Each adipose tissue depot has a distinct and 
heterogenous cell population, which implies that physiological roles 
and inflammatory responses may vary. A promising avenue of work 
may be to characterize these differences in ATMs across multiple 
adipose tissue depots. Finally, the abundance of animal studies which 
have been performed must be corroborated with work in humans in 
order to establish findings which are clinically relevant.
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