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Abstract

Background: CD4+ T cells play important roles in orchestrating immune responses,
maintaining homeostasis and offering a functional control of immune responses. Depending
on the cytokine milieu, a naive CD4+ T cell differentiates into different phenotypes. The
T helper 17 (Th17) phenotype remains controversial since it has been identified as an
inductor of inflammation, but it contributes to the regulatory arm of the immune response.
With the increased availability of high-throughput datasets, data-driven computational
modeling built upon a robust conceptual base becomes a powerful tool to build predictive,
counterintuitive, dynamic gene expression networks.

Results: We used a publicly available microarray dataset generated by Yosef et al.,' to
construct a dynamic model of Th17 differentiation. Following data treatment to tailor the
data to our 2,000+ genes of interest, our data-driven modeling pipeline used the Ingenuity
Pathway Analysis (IPA) platform to infer a proof-of-concept modeling network composed
of 67 genes involved in induction, function, and maintenance of Th17 differentiation. /n
vitro time-course mRNA expression data was used to calibrate the network using COPASI.
Computational simulations highlighted the potential role of IL-24 in shaping IL-17A
producing responses, and local sensitivity analysis demonstrated that IL-24 is negatively
correlated with FOXP3 expression, further regulating the balance between FOXP3 and
RORyt. Moreover, NLRP3 was identified as another potential therapeutic target to treat
Th17-driven pathologies. Local sensitivity analyses on NLRP3 highlighted the positive
correlation of NLRP3 with IP-10, GM-CSF, IFNy, and IL-17A.

Conclusions: We established a modeling pipeline for constructing and calibrating data-
driven models of Th17 differentiation. Our results highlighted the role of 1L-24, SGK1,
and NLRP3 as key modulators of Th17 cell differentiation. This modeling pipeline is an
example of a modeling environment for building computational models with deterministic
and stochastic features to generate new mechanistic immunological knowledge and to
identify novel therapeutic targets for human diseases.
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Introduction

Immunity represents a highly specialized, complex, hierarchical,
and networked system that shields humans from foreign pathogens,
injury and disease. The CD4+ T cell subsets are functionally and
phenotypically heterogeneous, consisting of different differentiated
populations involved in coordinating various aspects of adaptive
immunity. Upon antigen recognition and co-stimulatory signaling,
naive CD4+ T cells will differentiate into a specific phenotype
depending on the cytokine milieu composition. The current
understanding of CD4+ T cell differentiation comprises at least 9
phenotypically different states: T helper type 1 and 2 (Th1 and Th2),?
T helper type 9 (Th9),> T helper type 17 (Th17),* T helper type 22
(Th22),’ Follicular T helper cells (Tfh),*” induced regulatory T
cells (Treg),*® and type 1 regulatory cells (Trl)." In this panicle of
CD4+ T cell subsets, the Th17 population is a key player in chronic
inflammatory diseases such as Inflammatory Bowel Disease (IBD),"
type 2 diabetes (T2D),'? rtheumatoid arthritis,”® or in the infectious
disease setting such as during Helicobacter pylori'* or Clostridium

difficile infection.'” Even though Th17 cells have been highly
characterized in the context of inflammatory pathologies, they remain
elusive and controversial because of their plasticity and many of
their disease-causing mechanisms that are not fully understood. For
example, intestinal IL-17A+ IL-10+ Th17 cells are known to induce
an immunosuppressive environment,' however, in the onset of IBD,
increased IL-17A expression has been reported'” and Th17 cells
expressing IFNy or GM-CSF can accumulate during gut inflammatory
disorders.'®2

Theoretical models have been used to decipher the mechanisms
controlling differentiation and function of Th17 cells by studying the
relationship of RORyt with FOXP3.2'22 The relationship of FOXP3
and RORyt is especially important since these two transcription factors
are master regulators of agonist cell differentiation programs.?>?*
On one side, RORyt promotes pro-inflammatory secretion of 1L-21
and IL-17A. On the other side, FOXP3 promotes anti-inflammatory
responses through secretion of IL-10. We published a computational
and mathematical model of CD4+ T cell differentiation that predicted
and validated the role of peroxisome proliferators activated receptor
gamma (PPARY) in modulating the plasticity between Th17 and Treg
cells.”> Due to the increasing availability of high throughput data,
combining theoretical and data-driven approached becomes more
feasible.?*?
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While theory-driven modeling in the context of CD4+ T cell
differentiation has been linked to reductionist approaches, combining
data-driven and theoretical approaches has emerged as a new and
improved strategy for multivariate analysis and systems-level
hypothesis generation. In this context, network inference is a key
step in integrating information from various datasets in a manner
that combines data and theory. An example on how to use high-
throughput data to construct a CD4+ T cell comprehensive network
is the study published by Yosef et al.! where they used transcriptional
profiling with microarrays at high temporal resolution to build a
Th17 induction system. In this study, 1,291 genes were differentially
identified and clustered into 20 groups, depending on their temporal
profiles. Another advantage highlighted in this study is the use of
modules to explain the processes controlling Th17 differentiation.
Four regulatory modules were identified: the positive module that
increased IL-17 levels, the negative module that down-regulated IL-
17, the signature of Th17 genes and signature of other CD4+ T cell
subtypes. This work supported the finding of 3 novel key regulators of
Th17 function: Mina, Fas, and Pou2afl.

Our current paper describes the creation of a computational
ordinary differential equation (ODE)-based model of Th17 induction
and differentiation based on Yosef’s data' that incorporates both
dynamics and sensitivities across19 time points. To build the dynamic
model we analyzed the microarray data and inferred a computational
modeling network using the Ingenuity Pathways (IPA) platform,
we translated the inferred network into a Systems-Biology Markup
Language (SBML)-compliant system, imported the network into
COPASI, and calibrated the system by using the original microarray
datasets used to build the dynamic network model. Our in silico
predictions about the function of NLRP3 and IL-24 during Th17
differentiation, revealed a modulatory role over Thl7 function.
Furthermore, our local sensitivity analysis highlighted the correlations
between FOXP3, CEBPB, FOSLI, IRF4, and PPARy with IL-24, as
well as the correlations of IP-10, GM-CSF, IFNy, and IL-17A with
NLRP3.

Materials and methods

Algorithms for data treatment

In order to adjust and tailor the input data into Ingenuity Pathways
Analysis (IPA) platform we created a python3-based script that
trimmed and averaged probe sets. To run, the script needs a file
with a list of genes that the user wants to trim. The script runs as
follows: first, the script opens all files and deletes any white spaces
at the end of the line. The script then reads and stores the name of
the first gene in the list and scans the input microarray dataset. Once
found, it transfers the information in another file. If different entries
are found, the script averages them and only annotates the averaged
value. The algorithm also provides the standard deviation to decrease
error insertion. We excluded probe sets that highly deviated from the
others. The script completes once all the genes in the list have been
assessed and it creates an output file that will be used as input for IPA.

IPA Analysis

Ingenuity Pathways Analysis (IPA) (Ingenuity Systems, Redwood
City, CA, USA) was used for the identification of key nodes in
Th17 cells for network inference purposes. The microarray data
was uploaded as log2 changes and a Core Analysis was run to map
expression data to IPA’s Knowledge database. Upstream Activation
analysis was performed and selected genes were moved to Pathway
Analysis to create the topology interaction network. To specifically
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characterize the interactions, the IPA’s Knowledge database of each
interaction was consulted to discern between activation and inhibition

reactions.

Model parameter estimation

The parameter estimation task was run in COPASI using the
time-course experimental microarray data provided in.! Data was
uploaded into COPASI using IL-6 and TGFf as independent initial
concentrations. The rest of the nodes were set up as dependent
nodes on transient concentration for mapping purposes. The Particle
Algorithm with 2000 iterations was used first. Secondly, using Particle
Swarm algorithm results as initial values, the Genetic Algorithm was
run. Within each parameter estimation task, objective value, root
mean square, and standard deviation were calculated. Quality control
was checking on the results of parameter estimation by contra-posing
the fitted curves to the experimental data. Sensitivity analyses on the
parameters were performed to observe how robust and how affected
to change these parameters are.

Sensitivity Analysis

Sensitivity analysis was run with COPASI on our computational
model using a delta factor of 0.0001 and a delta minimum of le-12.
The subtask run for the analysis was a time-series with t=100h and
correlation of all the variables of the model against activated SGK1,
NLRP3, and IL-24 were assessed, showing positive correlation with
key transcription factors that determine phenotype differentiation on
Thl7.

Creation of an IL-24 and NLRP3 knock-out systems

In order to assess the modulation of NLRP3 and IL-24 over Th17
we created an IL-24 and a NLRP3 knock-out models. In order to do so,
we selectively chose the mass action-based reactions that up regulate
both nodes and set up their parameters to zero. Therefore, none of these
two nodes were able to up regulate its product concentration. Quality
control to ensure complete ablation of either NLRP3 concentration in
the NLRP3 null model, or IL-24 concentration in the IL-24 null model
was performed by executing time-course and scan analyses.

Results and discussion

Modeling approach and objectives
Integrated pipeline for data-driven modeling

To streamline the process of model construction from high-
dimensional microarray data, we built a semi-automated analysis
pipeline that provides a methodological approach for dynamic model
construction. The increase in publicly available microarray and RNA-
seq data opens a new avenue for extracting new knowledge by using
modeling and simulation approaches. Although the availability of
similar proteomics datasets is not there yet, RNA-sequencing datasets
canbeused to build frameworks to predict novel behaviors. Our pipeline
efficiently builds a computational model based on experimental data
(Figure 1) generated in-house or downloaded from publicly available
data repositories. The strategy proposed here allows us to obtain a
list of genes reads which are subjected to trimming algorithms (see
next section “Microarray Data Analyses” and methods section) and
used as input in the Ingenuity Pathways Analysis (IPA) platform for
creating an initial network model by using IPA’s network inference
algorithms. The resulting static network model was implemented into
Cell Designer by through a Cell Designer plug in and it became an
SBML-compliant network model. Next, we imported the SBML-
compliant network into the Complex Pathway Simulator (COPASI).
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COPASI allowed us to perform parameter estimation and local/global
sensitivity analysis (see “Modeling implementation”) and obtain
a fully calibrated dynamic model of Thl7 differentiation. Using
time-courses and sensitivity analyses, we were able to run in silico
experimentation with the implemented Th17 differentiation model
and come up with a series of predictions in regards to Interleukin-24
(IL-24), and the Noll-Like Receptor Protein 3 (NLRP3).

Simulation with COPAS! and ENISI |
{Ccorast (B)ems:

Time-course microarray
expression data from Yosef ef al.

(2013) Naturg
TR " — =
2 : SEML-compliant
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from publication and GEO Sulisigras e R
datasets

—r” IPAEE - |

NETWORK INFERENCE
analysis

Figure | Integrated data-driven modeling pipeline to generate SBML-
compliant, comprehensive, and predictive computational models of Th17
differentiation. Briefly, publicly available data from GEO was downloaded and
treated to represent a tailor input for Ingenuity Pathways (IPA). IPA was used
to infer a network that was imported into an SBML-compliant environment.
Using the microarray experimental data in COPASI, the computational model
was created and used to generate novel predictions.

Microarray data analyses

The data used for this study was obtained from the Gene
Expression Omnibus (GEO) NIH repository with the accession
number GSE43955. This dataset contains a microarray expression-
profiling array for Th17 differentiation, including a ThO control.
Briefly, Yosef et al.! isolated naive CD4+ T cells from wild-type
mice and treated them with IL-6 and TGFB1. Samples for mRNA
analysis were collected at 19 different time points (0, 0.5, 1, 2, 4, 6,
8, 10, 12, 16, 20, 24, 30, 42, 48, 50, 52, 60, and 72 hours). The ThO
control consisted of time- and culture-matched wild-type naive T cells
stimulated under ThO conditions. Furthermore, during microarray
or sequencing analysis strategies, the expression results are often
annotated with more than one entry per gene. For this reason, the GEO
dataset extracted from.! Contained gene reads that had entries that were
annotated with an unspecified gene name (eg. 1424888 _at), and also
had different entries for one same gene. At the same time, due to the
nature of the experimental design, the data obtained had two different
profiles: either non-differentiated or Th17-induced CD4+ T cells. For
this variety of reasons, we created a list of genes that contained 2,013
genes related to CD4+ T cell differentiation, function, progression,
and maintenance, metabolism, inflammatory genetic profiles, and a
variety of arrays of transcription factors (Supplementary Information
Table 1). We then used the python3-based script trimming algorithm
to trim the microarray gene list to only these 2,000+ genes and
average probe sets (see Methods for more detail). Furthermore, the
algorithm averaged the value of these genes if it found more than
one transcript for each one. Next, we calculated the fold change of
each of the genes by dividing the Th17 sample by its corresponding
ThO control at each time point. Finally, in order to limit the value
of expression and contain a more meaningful list, we calculated the
log2 value of the fold-change of expression as it has been described
in other publications.?

Copyright:
©2015 Carbo etal. 3

Network Inference and Analysis

In order to analyze the microarray data and infer functionally
relevant networks based on data values, we used the Ingenuity Pathway
Analysis (IPA) platform. IPA is a system that transforms a list of genes
into a set of relevant networks based on extensive records maintained
in the IPA Knowledge base. Indeed, reliable network inference
methods for gene expression data remain an unsolved problem.
Moreover, most inference algorithms fail to accurately predict
combinatorial gene regulation (i.e. several molecules regulating one
gene).” TPA provides an advantage for accurate network predictions
since the program contains a broad knowledge base curated from
literature. Therefore IPA was used to identify the molecular pathways
and functional groupings for significantly differentially expressed
mRNAs from the Thl7 differentiation data that was uploaded.
Briefly, expression data was uploaded into IPA and overlaid onto a
global molecular network developed from information contained in
the application along with predictions added manually based on in
house data. Canonical and predicted gene networks were generated
by IPA based on their connectivity, each ranked by a score. This score
is based on the hyper geometric distribution, calculated with the right-
tailed Fisher’s Exact Test, and corresponds to the negative log of this
p-value.

Functional analysis in IPA helps identify the published biological
functions and canonical pathways that are most significantly
associated with the dataset. Genes or gene products are represented
as nodes, where shape indicates functional groups, and the biological
relationship between two nodes is represented as an edge (line). All
lines are supported by at least one reference in literature, textbook,
or from canonical information stored in the Ingenuity Pathways
knowledge database. Other studies have already used similar
strategies’**! Furthermore, IPA uses powerful causal analytics that
help to build a regulatory picture and a better understanding of the
biology underlying a given gene expression dataset. More specifically,
IPA’s algorithms could retrieve not only the experimental validated
interactions, but also predicted ones, as well as networks that were
optimized for triangular connections between genes. With this
approach, IPA favors denser networks over more sparsely connected
ones. Of note, IPA assumes an unbiased, genome-wide, input. Our
approach consisted of trimming the dataset so it was CD4+ T cell
specific.

For this reason IPA was solely used for network analysis and
generation and not for gene enrichment. Our treated and modified
microarray data, based solely of the gene list and the log2 values,
was uploaded into IPA as a list of target genes with expression
values. Next, we computed a Core Analysis so IPA could retrieve
all regulatory interactions without restricting the search. Moreover,
by running a Core Analysis, we were able to map the microarray
data to IPA’s Knowledge Base (IPAKB), create molecular networks
(algorithmically generated pathways), divide the data into different
diseases and biological functions, and determine different canonical
pathways. Including both experimental and predicted connections,
IPA provided a list of upstream activators, where the most up- and
down-regulated genes could be observed and the information of such
genes could be accessed. Based on the all the genes uploaded into IPA,
we created a first inferred network (Figure 2A). The expression values
of this first network were calculated based on single observations
extracted from the microarray dataset. In some cases, time-points were
repeated and/or different replicates were given. In those cases, we
averaged the values so the final expression value was representative
of three replicates, when available. The microarray data was used to
generate a comprehensive gene regulatory interaction network in IPA.
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To ensure experimental data validity, we overlaid the data to
canonical pathways already set by IPA. This approach allowed us to
add a layer of validity. Given the amount of interactions generated,
we decided to select 67 genes based on the levels of expression over
time that showed the core of Th17 differentiation (Figure 2B). More
specifically, we evaluated the most and least differentially expressed
genes and included them in the list of 67 nodes to generate the model
for this use-case study. Future work will include a significant higher
amount of nodes that could potentially modulate key pathways of the
network as well. This inferred Th17 interaction network represents the
key and indispensable genes for a naive CD4+ T cell to differentiate
into Th17 when the cytokine milieu is rich in IL-6 and TGFf1,
based on published data.**3>*? Following modeling reduction to
accommodate more efficient simulation capabilities, we selected 35
genes and their interactions between them and imported them into
Cell Designer (Figure 2C).

Figure 2 Network inference and analysis prior to importation into an SBML-
compliant environment.

A. Out of all the nodes in IPA, 67 genes (up-regulated or down-regulated)
were selected based on differences in expression over the ThO
compartment.

B. SBML-compliant Cell designer network with a subset of genes in (B) to
import into COPASI.
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This selection was performed based on inclusion of the more
critical nodes to mount a Th17 differentiation cascade following
IL-6 and TGF B1 induction. To reduce the network by 35 genes, we
located I1L-6 and TGFp1 in the IPA network and we built downstream
pathways based on the centrality of RORyt and STAT3. Pathways
resulting from these interactions were depicted in our SBML-based
network in Cell Designer. This SBML-compliant model represents the
activating and inhibitory reactions that take place in the cytoplasm
and nucleus space and that will ultimately differentiate the cell into
a Thl7 cell.

Mathematical model implementation and calibration
Model implementation

The transition from a static diagram into a dynamic model of
Th17 differentiation helps to not only understand the connections of
the network but also observe how these connections changed, in a
dynamic manner, over time. Furthermore, the dynamic model allowed
us to run simulations and detect novel behaviors that could not be
observed by just looking at the static picture. Thus, adding dynamics
to the process increased the predictability of the network. Indeed,
other comprehensive models of CD4+ T cell differentiation have been
constructed.?*

However, this novel strategy allows using data-driven approaches
not only to construct its network, but also to dynamize the static picture
that the data offers. Using this rationale, we next sought to import the
inferred network, built by IPA and translated in Cell Designer, into the
Complex Pathway Simulator (COPASI).* After the importation, the
name of the species and reactions were annotated, the model, which
contains 32 equations and 58 parameters, was adjusted into COPASI
by creating Global Quantities and events, and the rate laws were
adjusted to create the ordinary differential equations automatically
(Figure S1).

Model calibration using microarray experimental data

The data used in this study performed by Yosef et al. in®’ consists
of a time-course in vitro study where gene expression analysis
was performed at 19 different time points (0, 0.5, 1, 2, 4, 6, 8, 10,
12, 16, 20, 24, 30, 42, 48, 50, 52, 60, and 72 hours). CD4+ T cell
differentiation is an extremely dynamic process that can vary in a time-
window of 1h ranges. Often times, experimental strategies in CD4+
T cell differentiation assess the levels of cytokines and transcription
factors once the cell is fully differentiated around 60h post induction.
With this approach, we are missing the specific cell dynamics of the
process, as well as the subtle details that may open new strategies for
therapeutic development. In this case, the 19 time points offer a clear
picture of the exact levels of expression of each gene at each time
point. Therefore, this dataset represents a perfect candidate to be used
for calibration purposes.

To accomplish this goal, we extracted the experimental data from
the raw database for the 35 nodes (except for Mina, Fas, and Pou2afl,
which their data was used for validation -see next section-) that our
computational model is composed of. Using the parameter estimation
function in COPASI, we uploaded these 32 curves and used the
Genetic Algorithm followed by a Particle Swarm Optimization
(PSO),* both embedded in COPASI, to adjust the model parameters.
PSO is a global search algorithm and thus depends only minimally on
the initial guess of each parameter and therefore avoids the subjective
estimation caused by initial guesses in local methods as Leven berg-
Marquardt. PSO has been used in other publications for the same
purpose.* In contrast, the genetic algorithm is an evolutionary
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algorithm that mimics the process of natural selection by mutating or
altering different parts of the system.

The database used for calibration was a time-point based database
with values of the selected nodes per time point. COPASI can run
parameter estimation algorithms based on time-course data. Therefore,
the result of such estimation is a combination of all time-points
executed automatically by COPASI. Furthermore, we found that some
of the parameters estimated are comparable to values available in the
literature in computational models that have been fully validated with
in vivo experiments.* Th17 cells produce IL-17. TGFB1, together
with pro-inflammatory cytokines IL-6 or IL-21 and IL-23, orchestrate
the differentiation of CD4+ T cells into the Th17 phenotype in a
concentration-dependent manner.’>% It has been demonstrated that
TGFB1 synergizes with IL-63 or IL-2135% to promote the expression
of IL-17. This is achieved through stimulation of retinoid-related
orphan receptor (ROR)yt by IL-6 through the transcription of STAT-
3,338 which in turn induces expression of IL-17.34

The combination and iterations of the genetic and PSO algorithms
resulted in the fitting of these key molecules expression data with
the computational model. First, the phosphorylated form of STAT3
controls and plays a central role during Th17 differentiation and
function.*® Our computational model was able to fit the experimental
data correctly (Figure 3A), which was characterized by an early rise
and a constant degradation over time. Next, the related orphan nuclear
receptor C gene (RORc) transcribes the related orphan nuclear receptor
gamma t (RORyt), which is central during Th17 differentiation. As
our results show, our model was able to fit the bell-shaped expression
profile that RORc possesses during differentiation (Figure 3B). As
a result of Th17 differentiation, IL-21 and IL-17 are produced and
secreted by the cell. Our computational model fit IL-17 (Figure 3C)
and IL-21 (Figure 3D).

RORc Fitting

A. STAT3 Fitting B.

Figure 3 Computational fitting of Th17-related molecules. COPASI was used
to run parameter estimation based on the microarray experimental data. Using
a Genetic Algorithm and PSO, the model fitted (in blue) the experimental data
(in black) of

A. Phosphorylated STAT3
B. RORc

C. Interleukin 21

D. Interleukin 17.

Other fitted molecules of the Th17 model are also depicted in
(Figure 4). IL-10 has usually been considered an anti-inflammatory
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molecule. Th17 cells produce high levels of IL-10 under certain
conditions. In this case, our computational model was able to
reproduce the dynamics of this cytokine over time (Figure 4A).
As observed, the parameter estimation results fit the experimental
data. The set of final parameters allowed us to simulate the Th17
differentiation model. However, robustness and sensitivity analyses
studies would be useful to confirm the global and local effects to
parameter change. TIMP1 is a transcription factors that, together with
the kinase SGK1, were selected due to their high expression during
Th17 differentiation. Although their role during Thl7 induction
has not fully been elucidated, they remain key players for IL-17
production. Our computational model was able to fit SGK1 (Figure
4B) and TIMP1 (Figure 4C).

SGK1 Fitting

A. IL-10 Fitting B.

Figure 4 Computational fitting of Th17-related molecules. COPASI was used
to run parameter estimation based on the microarray experimental data. Using
a Genetic Algorithm and PSO, the model fitted (in blue) the experimental data
(in black) of

A. Interleukin-10
B. Glucocorticoid Kinase | (SGKI)
C. TIMPI

D. FOXP3.

Local sensitivity analysis on SGK1, or also known as salt-sensing
glucocorticoid kinase 1, showed a strong correlation with RORc, IL-
17A, and most notably, the IL-23R (Figure 5). Indeed, the relationship
between SGK 1 and the promotion of pathogenic Th17 cells has already
been reported.*’ In this case, Wu et al. demonstrated that SGK1 is an
essential node downstream of the IL-23R pathway and is critical for
regulating its expression by de-activating FOXO1.The last example
of calibration is represented by FOXP3. FOXP3 inhibits the RORyt-
driven transcription of IL-17 by directly suppressing RORyt. 34
Furthermore, the IL-2/STAT-5 axis constrains Th17* in part through
a FOXP3-dependent mechanism, since STAT-5 activates FOXP3,* as
well as through the inhibition of the STAT-3/IL-21 pathway.*® Indeed,
double positive FOXP3 RORyt T-helper cells have been identified
as an intermediary that displays suppressive function’> and are
being investigated due to the plasticity of Th17. Our computational
model also captures the relationship of FOXP3 and RORyt and it
fits the expression data of FOXP3 (Figure 4D). These calibration
results proved grounds to start in silico experimentation with our
mathematical and computational model of Th17 differentiation.
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In silico experimentation and computational modeling
predictions

In silico validation of microarray experimental knock-out studies

Predictive models are characterized by generating results that can
be further validated using subsets of data or in vivo experimentation.
In order to initially validate our Th17 differentiation computational
model, three genes of interest were selected based on the knock-
out studies results published in.?” These genes were Mina, Fas, and
Pou2afl. The data for Mina, Fas, and Pou2afl was not used during
our calibration studies. Therefore, using a subset of data for validation
ensures that the model here presented contains predictive validation.

SGK1: Sensitivity Analysis

Correlation

Figure 5 Sensitivity analysis on salt-sensing glucocorticoid kinase | (SGKI)
by the Th17 differentiation computational model. Sensitivity analysis was run
with COPASI on our computational model using a delta factor of 0.0001 and
a delta minimum of le-12.The subtask run for the analysis was a time-series
with t=100h and correlation of all the variables of the model against activated
SGKI was assessed, showing high correlation with key transcription factors
that determine phenotype differentiation on Th17.

Mina is a chromatin regulator from the Jumonji C (JmjC) family
and it represses Rorc, Batf, and Irf4 while increasing the expression
of FOXP3.”” Our computational Th17 differentiation model was
able to fit the microarray experimental data for Mina (Figure 6A).
Secondly, Fas pertains to the TNFR family®! and it plays a key role
in many human and murine autoimmune pathologies.’*> Based on
the microarray results, Fas is early induced and is a target of STAT3.
Similarly to Mina, our computational model was able to fit the model
Fas concentration to the experimental data (Figure 6B). Of note, it
is interesting to see how residual levels of Fas at t=20h can trigger
IL-17A expression. These effects could be potentially attributed to
stochasticity or inhibition effects. Last, Pou2afl encodes the POU
domain class 2-associating factor 1, a protein that has been linked to
Th17 up regulation and that also mediates the inhibition of FOXP3,
STAT4, and GATA3.”

Fas and Pou2afl knockout systems that was validated using the
knock-out experimental data from Yosef et al.!

Consistently to our previous fittings, Pou2afl was also fitted by
our computational model (Figure 6C). Next, in order to validate some
of the experimental results extracted from the fifth figure of,>” where
T cells extracted from Mina -/-, Fas -/-, and Pou2afl -/- mice were
differentiated to Th17 with IL-6 and TGFf, we generated three knock-
out systems for Mina, Fas, and Pou2afl. Our computational IL-17A
expression results were validated with the experimental data with
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knock-out studies (Figure 6D). These results partially validate the
Th17 differentiation model and allowed us to generate further novel
predictions.

on IL-17A exp

L1 7] wha-type
== AT Poulaft + .
- AT S
- AT Fas s

Figure 6 Fitting and validation of Mina, Fas, and Pou2afl expression. Our
computational model was able to fit the expression of

A. Mina
B. Fas
C. Pou2afl

D. In silico experimentation using Mina.

IL-24 modulates the balance between FOXP3 and
RORyt during Th17 differentiation

One of the first targets for in silico experimentation was
Interleukin-24 (IL-24), a member of the IL-10 family of cytokines.
Upon binding to its receptors, IL-24 induces rapid activation of STAT1
and STAT3 transcription factors, both of which activate effector
profiles in CD4+ T cell differentiation.® The role of IL-24 during
Th17 differentiation, however, is very poorly understood and there
are no publications explicitly stating how 1L-24 fits in the complex
Th17 differentiation story.

The microarray analysis of the Th17 differentiation datasets used
in this study proved that IL-24 is highly expressed when a naive
CD4+ T cell is induced with TGFB1 and IL-6. At the same time, our
computational model was able to fit such dynamics observed in the
experimental data (Figure 7A). In order to computationally shed some
light on the role of 1L-24 during Th17 differentiation, we performed
local sensitivity analysis on the IL-24 node. Results showed how IL-
24 negatively correlates with FOXP3 and positively correlates with
Th17-related molecules such as STAT3, RORc, CEBPB and FOSL1
(Figure 7B). At first glance, IL-24 seems to promote an effector
response by down regulating FOXP3 and minimizing its inhibition
towards RORyt.

We next sought to determine what would occur if the expression of
IL-24 was completely ablated in a Th17 cell. In order to accomplish
this goal, we created an IL-24 null system, where the ability of IL-
24 to exert its functions to other nodes was completely impaired.
Results showed how the expression of FOXP3 in the IL-24 null when
compared to the wild-type system remains unchanged during the
first, approximately, 10 hours. However, after 10 hours, FOXP3 starts
degrading over time. In contrast, in the 1L-24 null system, FOXP3
reached a steady-state and it did not undergo degradation (Figure
7C). Since FOXP3 and RORyt are regulated with such tight balance,
we next sought to determine the effect of this un-degraded FOXP3
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towards the expression of RORc. Interestingly, the IL-24 null system
showed less expression of RORc when compared to the wild-type
Th17 model (Figure 7D).

A Computational Fitting of IL-24 B. i2a: Sensitivity Analisis
2000

!
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24|ty
| = L4 eapewssion

Correlation

D. RORcexpression

/-
w [ \\ — wild type
g |/ == IL-24 null

Figure 7 In silico experimentation: IL-24 modulates IL-17A production
through a FOXP3-dependent mechanism.

A. IL-24 computational fitting of the microarray experimental data using
Genetic Algorithm and PSO in COPASI

B. Sensitivity analysis on Interleukin 24.Time-course analysis of
C. FOXP3

D. RORc in either a wild-type model, or an IL-24 null Th17 differentiation
model.

We hypothesize that the relationship of RORc and IL-24 is
FOXP3-dependent. Our results show how that, when blocking IL-
24, the concentration of FOXP3 increases. The increase of FOXP3
breaks the balance of FOXP3 and RORc, which have been found to
antagonize.”>* For this reason we observe RORc down-regulated
with the absence of IL-24. These counterintuitive results generated in
silico by our Th17 differentiation model in regards to the role of IL-24
during Th17 induction should be validated with specific in vitro and
in vivo experimental studies. The potential modulating role of I1L-24
in the RORc-FOXP3 balance could lead to the development of IL-
24 blockers as therapeutic treatment. Therefore, if these predictions
were validated, 1L-24 would arise as an immune-based, powerful,
and potential therapeutic target to modulated inflammatory diseases
characterized by a Th17 up regulation.

NLRP3 knockout Thl7 cells result in an impaired
production of IL-17A

Th17 cells stimulate the tissue environment towards an effector
profile and orchestrate the function of cell subsets that are part of
the innate immune response, such as macrophages, neutrophils,
or epithelial cells. Part of this response, the Nod-like receptors
(NLRs) are a subset of pattern recognition receptors (PRRs) found
in the cytosol that are essential for detecting invading pathogens and
initiating innate immune responses. NLRs are part of a broader group,
named the inflammasome, which consists of molecular platforms
activated upon cellular infection or stress that triggers the release
of pro inflammatory cytokines, such as IL-1f or IL-6. Within the
inflammasome, NLRP3 has received particular attention since it
interacts with the caspase recruitment domain (ASC) and the cytokine
protease caspase-1, forming a cytoplasmic complex (NLRP3).5¢

Although it has been recently demonstrated that activation of
NLRP3 in other cell subsets promotes Thl7 differentiation in the
T cell compartment in the context of allogeneic hematopoietic cell
transplantation’’ and allergic lung inflammation,® T cell intrinsic
mechanisms by which NLRP3 modulates Th17 function remain
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highly unexplored. In our study, NLRP3 appeared in our list of the
genes up regulated by the induction of Th17 over time. In our inferred
network, NLRP3 is linked to the activation of GM-CSF and IFNy
(Figure 2C), both responsible to increase the pathogenic activity
of Th17 cells. Our Th17 computational model was able to fit the
experimental expression data of NLRP3 (Figure 8A). Indeed, our
sensitivity analysis confirmed that NLRP3 is linked to the activation
of the pathogenic machinery in Th17, since NLRP3 is positively
correlated with IFNy, GM-CSF, and IL-17A (Figure 8B). We next
sought to determine the role of NLRP3 over the production of IL-17A.
We created an in silico NLRP3 null Th17 model.

In this system, NLRP3’s ability to up regulate its linked genes
was completely ablated. Our results show how the lack of NLRP3
in a Th17 cells also triggers a down regulation of IL-17A (Figure
8C). Given the amount of variability of NLRP3 expression in the
first time-points of the Th17 induction process, we next sought to
determine if a change in the variability of the expression of NLRP3
at the early stages of differentiation would affect the outcome of IL-
17A production. To add stochasticity to the NLRP3 node, we used
ENISI SDE, a novel web-based stochastic modeling tool.®* Our results
show how that the addition of 5% variability in the expression of the
NLRP3 node slightly down regulated the IL-17A production in the
Th17 cell (Figure 8D).

A. Computational Fitting of NLRP3 B. NLRP3: Sensitivity Analisis
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Figure 8 In silico experimentation: NLRP3 helps to modulate IL-17A
production in Th17 cells.

A. NLRP3 computational fitting of the microarray experimental data using
Genetic Algorithm and PSO in COPASI

B. Sensitivity analysis on NLRP3

C. Time-course analysis of IL-17A in either a wild-type model, or an NLRP3
null Th17 differentiation model

D. Time course analysis of IL-17A and NLRP3 using a Stochastic Differential
Equation Simulator with a variability on the NLRP node of 5%

E. Time course analysis of IL-17A and NLRP3 using a Stochastic Differential
Equation Simulator with a variability on the NLRP node of 30%.

For this reason, we hypothesized that if the variability was higher,
the production of IL-17A would be highly affected. Indeed, our
results show how when the expression of the NLRP3 node was set
at a 30%, the production of IL-17A was dramatically affected (Figure
8E). These results highlight the role and T cell intrinsic relationship
of NLRP3 and IL-17A. Of note, it is very interesting to see how a
molecule like NLRP3, which shows a fold-change between 0.8 and
1, computationally exerts great changes in IL-17A. Further studies
will evaluate how modest changes in gene expression among
several components in a pathway is sometimes more relevant to cell
phenotype that the magnitude of a single gene expression change.
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More importantly, NLRP3 could represent a potential therapeutic
target to treat Th17-mediated inflammatory diseases. Indeed, NLRP3
is under investigation to evaluate if it can be a good target to treat type
2 diabetes.*!

Conclusions

As next generation sequencing technologies for datasets are
becoming increasingly available at lower cost, the computational
immunology field needs to take advantage of big data to construct
more comprehensive, predictive networks. Indeed, the CD4+ T
cell field will be soon taking advantage of newer and more novel
methods such as single-cell sequencing. These approaches will be
key to determine cell-to-cell differences and how heterogeneity
affects the population as a whole.® Proteomics datasets will also
confirm the findings observed using transcriptomics analyses.
In parallel, mathematical modeling of immune responses offers
an efficient approach to gain a deeper mechanistic systems-level
understanding Th17 differentiation and plasticity, but also on how
a Th17 cell can be pharmacologically manipulated to treat disease.
In this study, we presented a computational pipeline that combines
data-driven and theoretical approaches to study mechanisms of Th17
cell differentiation. Indeed, this paper explores a new potential use of
microarray and RNA-seq data to produce highly predictive dynamic
models. Of note, in order to calibrate the generated Th17 network, we
used all 19 time-points available from the datasets.

However, further sensitivity analyses and robustness studies will
be needed to evaluate the minimum number of time-points needed
to fully and efficiently calibrate this Th17 network. In this study, we
have identified two genes that are intimately related to Th17 function
and induction: IL-24 and NLRP3. Furthermore, we computationally
confirmed the role of SGK1 in modulating Th17 responses via an IL-
23R by running local sensitivity analysis on SGK1. We demonstrated
how the computational ablation of both of these genes resulted in a
modulation of Th17 function. By using stochastic modeling systems,
we also found that intrinsic noise in the NLRP3 gene dramatically
affected the expression of IL-17A. Furthermore, we identified a
molecular mechanism by which IL-24 exerts its modulator effects.
By performing sensitivity analysis we found a negative correlation
of IL-24 with FOXP3. In the IL-24 null system, we detected that the
ablation of IL-24 and the up regulation of FOXP3 a posteriori, triggers
an unbalanced equilibrium between FOXP3 and RORyt, since both
act in an antagonistic manner. More specifically, the subtle FOXP3 up
regulation caused by IL-24 led to a down regulation of RORyt.

Obviously, any prediction generated by the Th17 differentiation
model will need to be validated with specific in vitro and in vivo
experiments. Despite of this fact, in this paper we demonstrate how
our developed data-driven pipeline can generate meaningful and
counterintuitive predictions by taking advantage of publicly available
datasets and apply a computational modeling framework based
on network inference and data-mining to create a fully calibrated
computational model, in this case, of Th17 differentiation. Altogether,
this work can serve as a template on how to build a data-driven
computational model with deterministic and stochastic features
to generate new mechanistic knowledge related to immunological
mechanisms and to identify novel therapeutic targets for infectious
and immune-mediated diseases.
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