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serum and glucocorticoid inducible kinase 1; FOXP3, fork head box 
P3; SBML, systems-biology markup language; IBD, inflammatory 
bowel disease; ODE, ordinary differential equation; IPA, ingenuity 
pathways analysis

Introduction
Immunity represents a highly specialized, complex, hierarchical, 

and networked system that shields humans from foreign pathogens, 
injury and disease. The CD4+ T cell subsets are functionally and 
phenotypically heterogeneous, consisting of different differentiated 
populations involved in coordinating various aspects of adaptive 
immunity. Upon antigen recognition and co-stimulatory signaling, 
naïve CD4+ T cells will differentiate into a specific phenotype 
depending on the cytokine milieu composition. The current 
understanding of CD4+ T cell differentiation comprises at least 9 
phenotypically different states: T helper type 1 and 2 (Th1 and Th2),2 
T helper type 9 (Th9),3 T helper type 17 (Th17),4 T helper type 22 
(Th22),5 Follicular T helper cells (Tfh),6,7 induced regulatory T 
cells (Treg),8,9 and type 1 regulatory cells (Tr1).10 In this panicle of 
CD4+ T cell subsets, the Th17 population is a key player in chronic 
inflammatory diseases such as Inflammatory Bowel Disease (IBD),11 
type 2 diabetes (T2D),12 rheumatoid arthritis,13 or in the infectious 
disease setting such as during Helicobacter pylori14 or Clostridium 

difficile infection.15 Even though Th17 cells have been highly 
characterized in the context of inflammatory pathologies, they remain 
elusive and controversial because of their plasticity and many of 
their disease-causing mechanisms that are not fully understood. For 
example, intestinal IL-17A+ IL-10+ Th17 cells are known to induce 
an immunosuppressive environment,16 however, in the onset of IBD, 
increased IL-17A expression has been reported17 and Th17 cells 
expressing IFNγ or GM-CSF can accumulate during gut inflammatory 
disorders.18˗20

Theoretical models have been used to decipher the mechanisms 
controlling differentiation and function of Th17 cells by studying the 
relationship of RORγt with FOXP3.21,22 The relationship of FOXP3 
and RORγt is especially important since these two transcription factors 
are master regulators of agonist cell differentiation programs.23,24 
On one side, RORγt promotes pro-inflammatory secretion of IL-21 
and IL-17A. On the other side, FOXP3 promotes anti-inflammatory 
responses through secretion of IL-10. We published a computational 
and mathematical model of CD4+ T cell differentiation that predicted 
and validated the role of peroxisome proliferators activated receptor 
gamma (PPARγ) in modulating the plasticity between Th17 and Treg 
cells.25 Due to the increasing availability of high throughput data, 
combining theoretical and data-driven approached becomes more 
feasible.26,27
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Abstract

Background:  CD4+ T cells play important roles in orchestrating immune responses, 
maintaining homeostasis and offering a functional control of immune responses. Depending 
on the cytokine milieu, a naïve CD4+ T cell differentiates into different phenotypes. The 
T helper 17 (Th17) phenotype remains controversial since it has been identified as an 
inductor of inflammation, but it contributes to the regulatory arm of the immune response. 
With the increased availability of high-throughput datasets, data-driven computational 
modeling built upon a robust conceptual base becomes a powerful tool to build predictive, 
counterintuitive, dynamic gene expression networks.

Results: We used a publicly available microarray dataset generated by Yosef et al.,1 to 
construct a dynamic model of Th17 differentiation. Following data treatment to tailor the 
data to our 2,000+ genes of interest, our data-driven modeling pipeline used the Ingenuity 
Pathway Analysis (IPA) platform to infer a proof-of-concept modeling network composed 
of 67 genes involved in induction, function, and maintenance of Th17 differentiation. In 
vitro time-course mRNA expression data was used to calibrate the network using COPASI. 
Computational simulations highlighted the potential role of IL-24 in shaping IL-17A 
producing responses, and local sensitivity analysis demonstrated that IL-24 is negatively 
correlated with FOXP3 expression, further regulating the balance between FOXP3 and 
RORγt. Moreover, NLRP3 was identified as another potential therapeutic target to treat 
Th17-driven pathologies. Local sensitivity analyses on NLRP3 highlighted the positive 
correlation of NLRP3 with IP-10, GM-CSF, IFNγ, and IL-17A.

Conclusions: We established a modeling pipeline for constructing and calibrating data-
driven models of Th17 differentiation. Our results highlighted the role of IL-24, SGK1, 
and NLRP3 as key modulators of Th17 cell differentiation. This modeling pipeline is an 
example of a modeling environment for building computational models with deterministic 
and stochastic features to generate new mechanistic immunological knowledge and to 
identify novel therapeutic targets for human diseases.
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While theory-driven modeling in the context of CD4+ T cell 
differentiation has been linked to reductionist approaches, combining 
data-driven and theoretical approaches has emerged as a new and 
improved strategy for multivariate analysis and systems-level 
hypothesis generation. In this context, network inference is a key 
step in integrating information from various datasets in a manner 
that combines data and theory. An example on how to use high-
throughput data to construct a CD4+ T cell comprehensive network 
is the study published by Yosef et al.1 where they used transcriptional 
profiling with microarrays at high temporal resolution to build a 
Th17 induction system. In this study, 1,291 genes were differentially 
identified and clustered into 20 groups, depending on their temporal 
profiles. Another advantage highlighted in this study is the use of 
modules to explain the processes controlling Th17 differentiation. 
Four regulatory modules were identified: the positive module that 
increased IL-17 levels, the negative module that down-regulated IL-
17, the signature of Th17 genes and signature of other CD4+ T cell 
subtypes. This work supported the finding of 3 novel key regulators of 
Th17 function: Mina, Fas, and Pou2af1.

Our current paper describes the creation of a computational 
ordinary differential equation (ODE)-based model of Th17 induction 
and differentiation based on Yosef’s data1 that incorporates both 
dynamics and sensitivities across19 time points. To build the dynamic 
model we analyzed the microarray data and inferred a computational 
modeling network using the Ingenuity Pathways (IPA) platform, 
we translated the inferred network into a Systems-Biology Markup 
Language (SBML)-compliant system, imported the network into 
COPASI, and calibrated the system by using the original microarray 
datasets used to build the dynamic network model. Our in silico 
predictions about the function of NLRP3 and IL-24 during Th17 
differentiation, revealed a modulatory role over Th17 function. 
Furthermore, our local sensitivity analysis highlighted the correlations 
between FOXP3, CEBPB, FOSL1, IRF4, and PPARγ with IL-24, as 
well as the correlations of IP-10, GM-CSF, IFNγ, and IL-17A with 
NLRP3.

Materials and methods
Algorithms for data treatment

In order to adjust and tailor the input data into Ingenuity Pathways 
Analysis (IPA) platform we created a python3-based script that 
trimmed and averaged probe sets. To run, the script needs a file 
with a list of genes that the user wants to trim. The script runs as 
follows: first, the script opens all files and deletes any white spaces 
at the end of the line. The script then reads and stores the name of 
the first gene in the list and scans the input microarray dataset. Once 
found, it transfers the information in another file. If different entries 
are found, the script averages them and only annotates the averaged 
value. The algorithm also provides the standard deviation to decrease 
error insertion. We excluded probe sets that highly deviated from the 
others. The script completes once all the genes in the list have been 
assessed and it creates an output file that will be used as input for IPA.

IPA Analysis

Ingenuity Pathways Analysis (IPA) (Ingenuity Systems, Redwood 
City, CA, USA) was used for the identification of key nodes in 
Th17 cells for network inference purposes. The microarray data 
was uploaded as log2 changes and a Core Analysis was run to map 
expression data to IPA’s Knowledge database. Upstream Activation 
analysis was performed and selected genes were moved to Pathway 
Analysis to create the topology interaction network. To specifically 

characterize the interactions, the IPA’s Knowledge database of each 
interaction was consulted to discern between activation and inhibition 
reactions.

Model parameter estimation

The parameter estimation task was run in COPASI using the 
time-course experimental microarray data provided in.1 Data was 
uploaded into COPASI using IL-6 and TGFβ as independent initial 
concentrations. The rest of the nodes were set up as dependent 
nodes on transient concentration for mapping purposes. The Particle 
Algorithm with 2000 iterations was used first. Secondly, using Particle 
Swarm algorithm results as initial values, the Genetic Algorithm was 
run. Within each parameter estimation task, objective value, root 
mean square, and standard deviation were calculated. Quality control 
was checking on the results of parameter estimation by contra-posing 
the fitted curves to the experimental data. Sensitivity analyses on the 
parameters were performed to observe how robust and how affected 
to change these parameters are.

Sensitivity Analysis

Sensitivity analysis was run with COPASI on our computational 
model using a delta factor of 0.0001 and a delta minimum of 1e-12. 
The subtask run for the analysis was a time-series with t=100h and 
correlation of all the variables of the model against activated SGK1, 
NLRP3, and IL-24 were assessed, showing positive correlation with 
key transcription factors that determine phenotype differentiation on 
Th17.

Creation of an IL-24 and NLRP3 knock-out systems

In order to assess the modulation of NLRP3 and IL-24 over Th17 
we created an IL-24 and a NLRP3 knock-out models. In order to do so, 
we selectively chose the mass action-based reactions that up regulate 
both nodes and set up their parameters to zero. Therefore, none of these 
two nodes were able to up regulate its product concentration. Quality 
control to ensure complete ablation of either NLRP3 concentration in 
the NLRP3 null model, or IL-24 concentration in the IL-24 null model 
was performed by executing time-course and scan analyses.

Results and discussion
Modeling approach and objectives

Integrated pipeline for data-driven modeling

To streamline the process of model construction from high-
dimensional microarray data, we built a semi-automated analysis 
pipeline that provides a methodological approach for dynamic model 
construction. The increase in publicly available microarray and RNA-
seq data opens a new avenue for extracting new knowledge by using 
modeling and simulation approaches. Although the availability of 
similar proteomics datasets is not there yet, RNA-sequencing datasets 
can be used to build frameworks to predict novel behaviors. Our pipeline 
efficiently builds a computational model based on experimental data 
(Figure 1) generated in-house or downloaded from publicly available 
data repositories. The strategy proposed here allows us to obtain a 
list of genes reads which are subjected to trimming algorithms (see 
next section “Microarray Data Analyses” and methods section) and 
used as input in the Ingenuity Pathways Analysis (IPA) platform for 
creating an initial network model by using IPA’s network inference 
algorithms. The resulting static network model was implemented into 
Cell Designer by through a Cell Designer plug in and it became an 
SBML-compliant network model. Next, we imported the SBML-
compliant network into the Complex Pathway Simulator (COPASI). 
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COPASI allowed us to perform parameter estimation and local/global 
sensitivity analysis (see “Modeling implementation”) and obtain 
a fully calibrated dynamic model of Th17 differentiation. Using 
time-courses and sensitivity analyses, we were able to run in silico 
experimentation with the implemented Th17 differentiation model 
and come up with a series of predictions in regards to Interleukin-24 
(IL-24), and the Noll-Like Receptor Protein 3 (NLRP3).

Figure 1  Integrated data-driven modeling pipeline to generate SBML-
compliant, comprehensive, and predictive computational models of Th17 
differentiation. Briefly, publicly available data from GEO was downloaded and 
treated to represent a tailor input for Ingenuity Pathways (IPA). IPA was used 
to infer a network that was imported into an SBML-compliant environment. 
Using the microarray experimental data in COPASI, the computational model 
was created and used to generate novel predictions.

Microarray data analyses

The data used for this study was obtained from the Gene 
Expression Omnibus (GEO) NIH repository with the accession 
number GSE43955. This dataset contains a microarray expression-
profiling array for Th17 differentiation, including a Th0 control. 
Briefly, Yosef et al.1 isolated naïve CD4+ T cells from wild-type 
mice and treated them with IL-6 and TGFβ1. Samples for mRNA 
analysis were collected at 19 different time points (0, 0.5, 1, 2, 4, 6, 
8, 10, 12, 16, 20, 24, 30, 42, 48, 50, 52, 60, and 72 hours). The Th0 
control consisted of time- and culture-matched wild-type naïve T cells 
stimulated under Th0 conditions. Furthermore, during microarray 
or sequencing analysis strategies, the expression results are often 
annotated with more than one entry per gene. For this reason, the GEO 
dataset extracted from.1 Contained gene reads that had entries that were 
annotated with an unspecified gene name (eg. 1424888_at), and also 
had different entries for one same gene. At the same time, due to the 
nature of the experimental design, the data obtained had two different 
profiles: either non-differentiated or Th17-induced CD4+ T cells. For 
this variety of reasons, we created a list of genes that contained 2,013 
genes related to CD4+ T cell differentiation, function, progression, 
and maintenance, metabolism, inflammatory genetic profiles, and a 
variety of arrays of transcription factors (Supplementary Information 
Table 1). We then used the python3-based script trimming algorithm 
to trim the microarray gene list to only these 2,000+ genes and 
average probe sets (see Methods for more detail). Furthermore, the 
algorithm averaged the value of these genes if it found more than 
one transcript for each one. Next, we calculated the fold change of 
each of the genes by dividing the Th17 sample by its corresponding 
Th0 control at each time point. Finally, in order to limit the value 
of expression and contain a more meaningful list, we calculated the 
log2 value of the fold-change of expression as it has been described 
in other publications.28

Network Inference and Analysis

In order to analyze the microarray data and infer functionally 
relevant networks based on data values, we used the Ingenuity Pathway 
Analysis (IPA) platform. IPA is a system that transforms a list of genes 
into a set of relevant networks based on extensive records maintained 
in the IPA Knowledge base. Indeed, reliable network inference 
methods for gene expression data remain an unsolved problem. 
Moreover, most inference algorithms fail to accurately predict 
combinatorial gene regulation (i.e. several molecules regulating one 
gene).29 IPA provides an advantage for accurate network predictions 
since the program contains a broad knowledge base curated from 
literature. Therefore IPA was used to identify the molecular pathways 
and functional groupings for significantly differentially expressed 
mRNAs from the Th17 differentiation data that was uploaded. 
Briefly, expression data was uploaded into IPA and overlaid onto a 
global molecular network developed from information contained in 
the application along with predictions added manually based on in 
house data. Canonical and predicted gene networks were generated 
by IPA based on their connectivity, each ranked by a score. This score 
is based on the hyper geometric distribution, calculated with the right-
tailed Fisher’s Exact Test, and corresponds to the negative log of this 
p-value.

Functional analysis in IPA helps identify the published biological 
functions and canonical pathways that are most significantly 
associated with the dataset. Genes or gene products are represented 
as nodes, where shape indicates functional groups, and the biological 
relationship between two nodes is represented as an edge (line). All 
lines are supported by at least one reference in literature, textbook, 
or from canonical information stored in the Ingenuity Pathways 
knowledge database. Other studies have already used similar 
strategies30,31 Furthermore, IPA uses powerful causal analytics that 
help to build a regulatory picture and a better understanding of the 
biology underlying a given gene expression dataset. More specifically, 
IPA’s algorithms could retrieve not only the experimental validated 
interactions, but also predicted ones, as well as networks that were 
optimized for triangular connections between genes. With this 
approach, IPA favors denser networks over more sparsely connected 
ones. Of note, IPA assumes an unbiased, genome-wide, input. Our 
approach consisted of trimming the dataset so it was CD4+ T cell 
specific.

For this reason IPA was solely used for network analysis and 
generation and not for gene enrichment. Our treated and modified 
microarray data, based solely of the gene list and the log2 values, 
was uploaded into IPA as a list of target genes with expression 
values. Next, we computed a Core Analysis so IPA could retrieve 
all regulatory interactions without restricting the search. Moreover, 
by running a Core Analysis, we were able to map the microarray 
data to IPA’s Knowledge Base (IPAKB), create molecular networks 
(algorithmically generated pathways), divide the data into different 
diseases and biological functions, and determine different canonical 
pathways. Including both experimental and predicted connections, 
IPA provided a list of upstream activators, where the most up- and 
down-regulated genes could be observed and the information of such 
genes could be accessed. Based on the all the genes uploaded into IPA, 
we created a first inferred network (Figure 2A). The expression values 
of this first network were calculated based on single observations 
extracted from the microarray dataset. In some cases, time-points were 
repeated and/or different replicates were given. In those cases, we 
averaged the values so the final expression value was representative 
of three replicates, when available. The microarray data was used to 
generate a comprehensive gene regulatory interaction network in IPA.
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To ensure experimental data validity, we overlaid the data to 
canonical pathways already set by IPA. This approach allowed us to 
add a layer of validity. Given the amount of interactions generated, 
we decided to select 67 genes based on the levels of expression over 
time that showed the core of Th17 differentiation (Figure 2B). More 
specifically, we evaluated the most and least differentially expressed 
genes and included them in the list of 67 nodes to generate the model 
for this use-case study. Future work will include a significant higher 
amount of nodes that could potentially modulate key pathways of the 
network as well. This inferred Th17 interaction network represents the 
key and indispensable genes for a naïve CD4+ T cell to differentiate 
into Th17 when the cytokine milieu is rich in IL-6 and TGFβ1, 
based on published data.24,32˗42 Following modeling reduction to 
accommodate more efficient simulation capabilities, we selected 35 
genes and their interactions between them and imported them into 
Cell Designer (Figure 2C).

Figure 2 Network inference and analysis prior to importation into an SBML-
compliant environment.

A.	 Out of all the nodes in IPA, 67 genes (up-regulated or down-regulated) 
were selected based on differences in expression over the Th0 
compartment.

B.	 SBML-compliant Cell designer network with a subset of genes in (B) to 
import into COPASI. 

This selection was performed based on inclusion of the more 
critical nodes to mount a Th17 differentiation cascade following 
IL-6 and TGF β1 induction. To reduce the network by 35 genes, we 
located IL-6 and TGFβ1 in the IPA network and we built downstream 
pathways based on the centrality of RORγt and STAT3. Pathways 
resulting from these interactions were depicted in our SBML-based 
network in Cell Designer. This SBML-compliant model represents the 
activating and inhibitory reactions that take place in the cytoplasm 
and nucleus space and that will ultimately differentiate the cell into 
a Th17 cell.

Mathematical model implementation and calibration

Model implementation

The transition from a static diagram into a dynamic model of 
Th17 differentiation helps to not only understand the connections of 
the network but also observe how these connections changed, in a 
dynamic manner, over time. Furthermore, the dynamic model allowed 
us to run simulations and detect novel behaviors that could not be 
observed by just looking at the static picture. Thus, adding dynamics 
to the process increased the predictability of the network. Indeed, 
other comprehensive models of CD4+ T cell differentiation have been 
constructed.24

However, this novel strategy allows using data-driven approaches 
not only to construct its network, but also to dynamize the static picture 
that the data offers. Using this rationale, we next sought to import the 
inferred network, built by IPA and translated in Cell Designer, into the 
Complex Pathway Simulator (COPASI).43 After the importation, the 
name of the species and reactions were annotated, the model, which 
contains 32 equations and 58 parameters, was adjusted into COPASI 
by creating Global Quantities and events, and the rate laws were 
adjusted to create the ordinary differential equations automatically 
(Figure S1).

Model calibration using microarray experimental data

The data used in this study performed by Yosef et al. in27 consists 
of a time-course in vitro study where gene expression analysis 
was performed at 19 different time points (0, 0.5, 1, 2, 4, 6, 8, 10, 
12, 16, 20, 24, 30, 42, 48, 50, 52, 60, and 72 hours). CD4+ T cell 
differentiation is an extremely dynamic process that can vary in a time-
window of 1h ranges. Often times, experimental strategies in CD4+ 
T cell differentiation assess the levels of cytokines and transcription 
factors once the cell is fully differentiated around 60h post induction. 
With this approach, we are missing the specific cell dynamics of the 
process, as well as the subtle details that may open new strategies for 
therapeutic development. In this case, the 19 time points offer a clear 
picture of the exact levels of expression of each gene at each time 
point. Therefore, this dataset represents a perfect candidate to be used 
for calibration purposes.

To accomplish this goal, we extracted the experimental data from 
the raw database for the 35 nodes (except for Mina, Fas, and Pou2af1, 
which their data was used for validation -see next section-) that our 
computational model is composed of. Using the parameter estimation 
function in COPASI, we uploaded these 32 curves and used the 
Genetic Algorithm followed by a Particle Swarm Optimization 
(PSO),44 both embedded in COPASI, to adjust the model parameters. 
PSO is a global search algorithm and thus depends only minimally on 
the initial guess of each parameter and therefore avoids the subjective 
estimation caused by initial guesses in local methods as Leven berg-
Marquardt. PSO has been used in other publications for the same 
purpose.45 In contrast, the genetic algorithm is an evolutionary 
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algorithm that mimics the process of natural selection by mutating or 
altering different parts of the system.

The database used for calibration was a time-point based database 
with values of the selected nodes per time point. COPASI can run 
parameter estimation algorithms based on time-course data. Therefore, 
the result of such estimation is a combination of all time-points 
executed automatically by COPASI. Furthermore, we found that some 
of the parameters estimated are comparable to values available in the 
literature in computational models that have been fully validated with 
in vivo experiments.24 Th17 cells produce IL-17. TGFβ1, together 
with pro-inflammatory cytokines IL-6 or IL-21 and IL-23, orchestrate 
the differentiation of CD4+ T cells into the Th17 phenotype in a 
concentration-dependent manner.32,33 It has been demonstrated that 
TGFβ1 synergizes with IL-634 or IL-2135,36 to promote the expression 
of IL-17. This is achieved through stimulation of retinoid-related 
orphan receptor (ROR)γt by IL-6 through the transcription of STAT-
3,37,38 which in turn induces expression of IL-17.39,40

The combination and iterations of the genetic and PSO algorithms 
resulted in the fitting of these key molecules expression data with 
the computational model. First, the phosphorylated form of STAT3 
controls and plays a central role during Th17 differentiation and 
function.46 Our computational model was able to fit the experimental 
data correctly (Figure 3A), which was characterized by an early rise 
and a constant degradation over time. Next, the related orphan nuclear 
receptor C gene (RORc) transcribes the related orphan nuclear receptor 
gamma t (RORγt), which is central during Th17 differentiation. As 
our results show, our model was able to fit the bell-shaped expression 
profile that RORc possesses during differentiation (Figure 3B). As 
a result of Th17 differentiation, IL-21 and IL-17 are produced and 
secreted by the cell. Our computational model fit IL-17 (Figure 3C) 
and IL-21 (Figure 3D).

Figure 3 Computational fitting of Th17-related molecules. COPASI was used 
to run parameter estimation based on the microarray experimental data. Using 
a Genetic Algorithm and PSO, the model fitted (in blue) the experimental data 
(in black) of

A.	 Phosphorylated STAT3

B.	 RORc

C.	 Interleukin 21

D.	 Interleukin 17.

Other fitted molecules of the Th17 model are also depicted in 
(Figure 4). IL-10 has usually been considered an anti-inflammatory 

molecule. Th17 cells produce high levels of IL-10 under certain 
conditions. In this case, our computational model was able to 
reproduce the dynamics of this cytokine over time (Figure 4A). 
As observed, the parameter estimation results fit the experimental 
data. The set of final parameters allowed us to simulate the Th17 
differentiation model. However, robustness and sensitivity analyses 
studies would be useful to confirm the global and local effects to 
parameter change. TIMP1 is a transcription factors that, together with 
the kinase SGK1, were selected due to their high expression during 
Th17 differentiation. Although their role during Th17 induction 
has not fully been elucidated, they remain key players for IL-17 
production. Our computational model was able to fit SGK1 (Figure 
4B) and TIMP1 (Figure 4C).

Figure 4 Computational fitting of Th17-related molecules. COPASI was used 
to run parameter estimation based on the microarray experimental data. Using 
a Genetic Algorithm and PSO, the model fitted (in blue) the experimental data 
(in black) of

A.	 Interleukin-10

B.	 Glucocorticoid Kinase 1 (SGK1)

C.	 TIMP1

D.	 FOXP3.

Local sensitivity analysis on SGK1, or also known as salt-sensing 
glucocorticoid kinase 1, showed a strong correlation with RORc, IL-
17A, and most notably, the IL-23R (Figure 5). Indeed, the relationship 
between SGK1 and the promotion of pathogenic Th17 cells has already 
been reported.47 In this case, Wu et al. demonstrated that SGK1 is an 
essential node downstream of the IL-23R pathway and is critical for 
regulating its expression by de-activating FOXO1.The last example 
of calibration is represented by FOXP3. FOXP3 inhibits the RORγt-
driven transcription of IL-17 by directly suppressing RORγt.33,42 
Furthermore, the IL-2/STAT-5 axis constrains Th1748 in part through 
a FOXP3-dependent mechanism, since STAT-5 activates FOXP3,49 as 
well as through the inhibition of the STAT-3/IL-21 pathway.50 Indeed, 
double positive FOXP3 RORγt T-helper cells have been identified 
as an intermediary that displays suppressive function22 and are 
being investigated due to the plasticity of Th17. Our computational 
model also captures the relationship of FOXP3 and RORγt and it 
fits the expression data of FOXP3 (Figure 4D). These calibration 
results proved grounds to start in silico experimentation with our 
mathematical and computational model of Th17 differentiation.
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In silico experimentation and computational modeling 
predictions

In silico validation of microarray experimental knock-out studies

Predictive models are characterized by generating results that can 
be further validated using subsets of data or in vivo experimentation. 
In order to initially validate our Th17 differentiation computational 
model, three genes of interest were selected based on the knock-
out studies results published in.27 These genes were Mina, Fas, and 
Pou2af1. The data for Mina, Fas, and Pou2af1 was not used during 
our calibration studies. Therefore, using a subset of data for validation 
ensures that the model here presented contains predictive validation.

Figure 5 Sensitivity analysis on salt-sensing glucocorticoid kinase 1 (SGK1) 
by the Th17 differentiation computational model. Sensitivity analysis was run 
with COPASI on our computational model using a delta factor of 0.0001 and 
a delta minimum of 1e-12. The subtask run for the analysis was a time-series 
with t=100h and correlation of all the variables of the model against activated 
SGK1 was assessed, showing high correlation with key transcription factors 
that determine phenotype differentiation on Th17.

Mina is a chromatin regulator from the Jumonji C (JmjC) family 
and it represses Rorc, Batf, and Irf4 while increasing the expression 
of FOXP3.27 Our computational Th17 differentiation model was 
able to fit the microarray experimental data for Mina (Figure 6A). 
Secondly, Fas pertains to the TNFR family51 and it plays a key role 
in many human and murine autoimmune pathologies.52,53 Based on 
the microarray results, Fas is early induced and is a target of STAT3. 
Similarly to Mina, our computational model was able to fit the model 
Fas concentration to the experimental data (Figure 6B). Of note, it 
is interesting to see how residual levels of Fas at t=20h can trigger 
IL-17A expression. These effects could be potentially attributed to 
stochasticity or inhibition effects. Last, Pou2af1 encodes the POU 
domain class 2-associating factor 1, a protein that has been linked to 
Th17 up regulation and that also mediates the inhibition of FOXP3, 
STAT4, and GATA3.27

Fas and Pou2af1 knockout systems that was validated using the 
knock-out experimental data from Yosef et al.1

Consistently to our previous fittings, Pou2af1 was also fitted by 
our computational model (Figure 6C). Next, in order to validate some 
of the experimental results extracted from the fifth figure of,27 where 
T cells extracted from Mina -/-, Fas -/-, and Pou2af1 -/- mice were 
differentiated to Th17 with IL-6 and TGFβ, we generated three knock-
out systems for Mina, Fas, and Pou2af1. Our computational IL-17A 
expression results were validated with the experimental data with 

knock-out studies (Figure 6D). These results partially validate the 
Th17 differentiation model and allowed us to generate further novel 
predictions.

Figure 6  Fitting and validation of Mina, Fas, and Pou2af1 expression. Our 
computational model was able to fit the expression of

A.	 Mina

B.	 Fas

C.	 Pou2af1

D.	 In silico experimentation using Mina.

IL-24 modulates the balance between FOXP3 and 
RORγt during Th17 differentiation

One of the first targets for in silico experimentation was 
Interleukin-24 (IL-24), a member of the IL-10 family of cytokines. 
Upon binding to its receptors, IL-24 induces rapid activation of STAT1 
and STAT3 transcription factors, both of which activate effector 
profiles in CD4+ T cell differentiation.54 The role of IL-24 during 
Th17 differentiation, however, is very poorly understood and there 
are no publications explicitly stating how IL-24 fits in the complex 
Th17 differentiation story.

The microarray analysis of the Th17 differentiation datasets used 
in this study proved that IL-24 is highly expressed when a naïve 
CD4+ T cell is induced with TGFβ1 and IL-6. At the same time, our 
computational model was able to fit such dynamics observed in the 
experimental data (Figure 7A). In order to computationally shed some 
light on the role of IL-24 during Th17 differentiation, we performed 
local sensitivity analysis on the IL-24 node. Results showed how IL-
24 negatively correlates with FOXP3 and positively correlates with 
Th17-related molecules such as STAT3, RORc, CEBPB and FOSL1 
(Figure 7B). At first glance, IL-24 seems to promote an effector 
response by down regulating FOXP3 and minimizing its inhibition 
towards RORγt.

We next sought to determine what would occur if the expression of 
IL-24 was completely ablated in a Th17 cell. In order to accomplish 
this goal, we created an IL-24 null system, where the ability of IL-
24 to exert its functions to other nodes was completely impaired. 
Results showed how the expression of FOXP3 in the IL-24 null when 
compared to the wild-type system remains unchanged during the 
first, approximately, 10 hours. However, after 10 hours, FOXP3 starts 
degrading over time. In contrast, in the IL-24 null system, FOXP3 
reached a steady-state and it did not undergo degradation (Figure 
7C). Since FOXP3 and RORγt are regulated with such tight balance, 
we next sought to determine the effect of this un-degraded FOXP3 
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towards the expression of RORc. Interestingly, the IL-24 null system 
showed less expression of RORc when compared to the wild-type 
Th17 model (Figure 7D).

Figure 7  In silico experimentation: IL-24 modulates IL-17A production 
through a FOXP3-dependent mechanism.

A.	 IL-24 computational fitting of the microarray experimental data using 
Genetic Algorithm and PSO in COPASI

B.	 Sensitivity analysis on Interleukin 24. Time-course analysis of

C.	 FOXP3

D.	 RORc in either a wild-type model, or an IL-24 null Th17 differentiation 
model.

We hypothesize that the relationship of RORc and IL-24 is 
FOXP3-dependent. Our results show how that, when blocking IL-
24, the concentration of FOXP3 increases. The increase of FOXP3 
breaks the balance of FOXP3 and RORc, which have been found to 
antagonize.22,23 For this reason we observe RORc down-regulated 
with the absence of IL-24. These counterintuitive results generated in 
silico by our Th17 differentiation model in regards to the role of IL-24 
during Th17 induction should be validated with specific in vitro and 
in vivo experimental studies. The potential modulating role of IL-24 
in the RORc-FOXP3 balance could lead to the development of IL-
24 blockers as therapeutic treatment. Therefore, if these predictions 
were validated, IL-24 would arise as an immune-based, powerful, 
and potential therapeutic target to modulated inflammatory diseases 
characterized by a Th17 up regulation.

NLRP3 knockout Th17 cells result in an impaired 
production of IL-17A

Th17 cells stimulate the tissue environment towards an effector 
profile and orchestrate the function of cell subsets that are part of 
the innate immune response, such as macrophages, neutrophils, 
or epithelial cells. Part of this response, the Nod-like receptors 
(NLRs) are a subset of pattern recognition receptors (PRRs) found 
in the cytosol that are essential for detecting invading pathogens and 
initiating innate immune responses. NLRs are part of a broader group, 
named the inflammasome, which consists of molecular platforms 
activated upon cellular infection or stress that triggers the release 
of pro inflammatory cytokines, such as IL-1β or IL-6.55 Within the 
inflammasome, NLRP3 has received particular attention since it 
interacts with the caspase recruitment domain (ASC) and the cytokine 
protease caspase-1, forming a cytoplasmic complex (NLRP3).56

Although it has been recently demonstrated that activation of 
NLRP3 in other cell subsets promotes Th17 differentiation in the 
T cell compartment in the context of allogeneic hematopoietic cell 
transplantation57 and allergic lung inflammation,58 T cell intrinsic 
mechanisms by which NLRP3 modulates Th17 function remain 

highly unexplored. In our study, NLRP3 appeared in our list of the 
genes up regulated by the induction of Th17 over time. In our inferred 
network, NLRP3 is linked to the activation of GM-CSF and IFNγ 
(Figure 2C), both responsible to increase the pathogenic activity 
of Th17 cells.59 Our Th17 computational model was able to fit the 
experimental expression data of NLRP3 (Figure 8A). Indeed, our 
sensitivity analysis confirmed that NLRP3 is linked to the activation 
of the pathogenic machinery in Th17, since NLRP3 is positively 
correlated with IFNγ, GM-CSF, and IL-17A (Figure 8B). We next 
sought to determine the role of NLRP3 over the production of IL-17A. 
We created an in silico NLRP3 null Th17 model.

In this system, NLRP3’s ability to up regulate its linked genes 
was completely ablated. Our results show how the lack of NLRP3 
in a Th17 cells also triggers a down regulation of IL-17A (Figure 
8C). Given the amount of variability of NLRP3 expression in the 
first time-points of the Th17 induction process, we next sought to 
determine if a change in the variability of the expression of NLRP3 
at the early stages of differentiation would affect the outcome of IL-
17A production. To add stochasticity to the NLRP3 node, we used 
ENISI SDE, a novel web-based stochastic modeling tool.60 Our results 
show how that the addition of 5% variability in the expression of the 
NLRP3 node slightly down regulated the IL-17A production in the 
Th17 cell (Figure 8D).

Figure 8  In silico experimentation: NLRP3 helps to modulate IL-17A 
production in Th17 cells.

A.	 NLRP3 computational fitting of the microarray experimental data using 
Genetic Algorithm and PSO in COPASI

B.	 Sensitivity analysis on NLRP3

C.	 Time-course analysis of IL-17A in either a wild-type model, or an NLRP3 
null Th17 differentiation model

D.	 Time course analysis of IL-17A and NLRP3 using a Stochastic Differential 
Equation Simulator with a variability on the NLRP node of 5%

E.	 Time course analysis of IL-17A and NLRP3 using a Stochastic Differential 
Equation Simulator with a variability on the NLRP node of 30%.

For this reason, we hypothesized that if the variability was higher, 
the production of IL-17A would be highly affected. Indeed, our 
results show how when the expression of the NLRP3 node was set 
at a 30%, the production of IL-17A was dramatically affected (Figure 
8E). These results highlight the role and T cell intrinsic relationship 
of NLRP3 and IL-17A. Of note, it is very interesting to see how a 
molecule like NLRP3, which shows a fold-change between 0.8 and 
1, computationally exerts great changes in IL-17A. Further studies 
will evaluate how modest changes in gene expression among 
several components in a pathway is sometimes more relevant to cell 
phenotype that the magnitude of a single gene expression change. 
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More importantly, NLRP3 could represent a potential therapeutic 
target to treat Th17-mediated inflammatory diseases. Indeed, NLRP3 
is under investigation to evaluate if it can be a good target to treat type 
2 diabetes.61

Conclusions
As next generation sequencing technologies for datasets are 

becoming increasingly available at lower cost, the computational 
immunology field needs to take advantage of big data to construct 
more comprehensive, predictive networks. Indeed, the CD4+ T 
cell field will be soon taking advantage of newer and more novel 
methods such as single-cell sequencing. These approaches will be 
key to determine cell-to-cell differences and how heterogeneity 
affects the population as a whole.62 Proteomics datasets will also 
confirm the findings observed using transcriptomics analyses. 
In parallel, mathematical modeling of immune responses offers 
an efficient approach to gain a deeper mechanistic systems-level 
understanding Th17 differentiation and plasticity, but also on how 
a Th17 cell can be pharmacologically manipulated to treat disease. 
In this study, we presented a computational pipeline that combines 
data-driven and theoretical approaches to study mechanisms of Th17 
cell differentiation. Indeed, this paper explores a new potential use of 
microarray and RNA-seq data to produce highly predictive dynamic 
models. Of note, in order to calibrate the generated Th17 network, we 
used all 19 time-points available from the datasets.

However, further sensitivity analyses and robustness studies will 
be needed to evaluate the minimum number of time-points needed 
to fully and efficiently calibrate this Th17 network. In this study, we 
have identified two genes that are intimately related to Th17 function 
and induction: IL-24 and NLRP3. Furthermore, we computationally 
confirmed the role of SGK1 in modulating Th17 responses via an IL-
23R by running local sensitivity analysis on SGK1. We demonstrated 
how the computational ablation of both of these genes resulted in a 
modulation of Th17 function. By using stochastic modeling systems, 
we also found that intrinsic noise in the NLRP3 gene dramatically 
affected the expression of IL-17A. Furthermore, we identified a 
molecular mechanism by which IL-24 exerts its modulator effects. 
By performing sensitivity analysis we found a negative correlation 
of IL-24 with FOXP3. In the IL-24 null system, we detected that the 
ablation of IL-24 and the up regulation of FOXP3 a posteriori, triggers 
an unbalanced equilibrium between FOXP3 and RORγt, since both 
act in an antagonistic manner. More specifically, the subtle FOXP3 up 
regulation caused by IL-24 led to a down regulation of RORγt.

Obviously, any prediction generated by the Th17 differentiation 
model will need to be validated with specific in vitro and in vivo 
experiments. Despite of this fact, in this paper we demonstrate how 
our developed data-driven pipeline can generate meaningful and 
counterintuitive predictions by taking advantage of publicly available 
datasets and apply a computational modeling framework based 
on network inference and data-mining to create a fully calibrated 
computational model, in this case, of Th17 differentiation. Altogether, 
this work can serve as a template on how to build a data-driven 
computational model with deterministic and stochastic features 
to generate new mechanistic knowledge related to immunological 
mechanisms and to identify novel therapeutic targets for infectious 
and immune-mediated diseases.

Acknowledgements
This work was supported in part by a grant from the National 

Institutes of Health (5R01AT004308) to JBR, NIAID Contract No. 
HHSN272201000056C to JBR, and funds from the Nutritional 

Immunology and Molecular Medicine Laboratory (URL:  www.
modelingimmunity.org).

Conflicts of interest
None.

Funding
None.

References
1.	 Yosef N, Shalek AK, Gaublomme JT, et al. Dynamic regulatory network 

controlling TH17 cell differentiation. Nature. 2013;496(7446):461˗468.

2.	 Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of 
lymphokine secretion lead to different functional properties. Annu Rev 
Immunol. 1989;7:145˗173.

3.	 Ma CS, Tangye SG, Deenick EK. Human Th9 cells: inflammatory 
cytokines modulate IL-9 production through the induction of IL-21. 
Immunol Cell Biol. 2010;88(6):621˗623.

4.	 Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor 
RORgammat directs the differentiation program of proinflammatory IL-
17+ T helper cells. Cell. 2006;126(6):1121˗1133.

5.	 Ramirez JM, Brembilla NC, Sorg O, et al. Activation of the aryl 
hydrocarbon receptor reveals distinct requirements for IL-22 
and IL-17 production by human T helper cells. Eur J Immunol. 
2010;40(9):2450˗2459.

6.	 Nurieva RI, Chung Y, Hwang D, et al. Generation of T follicular helper 
cells is mediated by interleukin-21 but independent of T helper 1, 2, or 
17 cell lineages. Immunity. 2008;29(1):138˗149.

7.	 Vogelzang A, McGuire HM, Yu D, et al. A fundamental role for 
interleukin-21 in the generation of T follicular helper cells. Immunity. 
2008;29(1):127˗137.

8.	 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development 
by the transcription factor Foxp3. Science. 2003;299(5609):1057˗1061.

9.	 Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the 
development and function of CD4+CD25+ regulatory T cells. Nat 
Immunol. 2003;4(4):330˗336.

10.	 Groux H, O’Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits 
antigen-specific T-cell responses and prevents colitis. Nature. 
1997;389(6652):737˗742.

11.	 Abraham C, Cho J. Interleukin-23/Th17 pathways and inflammatory 
bowel disease. Inflamm Bowel Dis. 2009;15(7):1090˗1100.

12.	 Wu CC, Sytwu HK, Lu KC, et al. Role of T cells in type 2 diabetic 
nephropathy. Exp Diabetes Res. 2011;2011:514˗738.

13.	 van Hamburg JP, Asmawidjaja PS, Davelaar N, et al. Th17 cells, but 
not Th1 cells, from patients with early rheumatoid arthritis are potent 
inducers of matrix metalloproteinases and proinflammatory cytokines 
upon synovial fibroblast interaction, including autocrine interleukin-
17A production. Arthritis Rheum. 2011;63(1):73˗83.

14.	 Carbo A, Bassaganya-Riera J, Pedragosa M, et al. Predictive 
computational modeling of the mucosal immune responses during 
Helicobacter pylori infection. PloS One. 2013;8(9):e73365.

15.	 Viladomiu M, Hontecillas R, Pedragosa M, et al. Modeling the role of 
peroxisome proliferator-activated receptor gamma and microRNA-146 
in mucosal immune responses to Clostridium difficile. PLoS One. 
2012;7(10):e47525.

16.	 Esplugues E, Huber S, Gagliani N, et al. Control of TH17 cells occurs in 
the small intestine. Nature. 2011;475(7357):514˗518.

17.	 Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 
17 in inflammatory bowel disease. Gut. 2003;52(1):65˗70.

https://doi.org/10.15406/moji.2015.02.00038
http://www.modelingimmunity.org/
http://www.modelingimmunity.org/
http://www.ncbi.nlm.nih.gov/pubmed/23467089
http://www.ncbi.nlm.nih.gov/pubmed/23467089
http://www.ncbi.nlm.nih.gov/pubmed/2523712
http://www.ncbi.nlm.nih.gov/pubmed/2523712
http://www.ncbi.nlm.nih.gov/pubmed/2523712
http://www.ncbi.nlm.nih.gov/pubmed/20531361
http://www.ncbi.nlm.nih.gov/pubmed/20531361
http://www.ncbi.nlm.nih.gov/pubmed/20531361
http://www.ncbi.nlm.nih.gov/pubmed/16990136
http://www.ncbi.nlm.nih.gov/pubmed/16990136
http://www.ncbi.nlm.nih.gov/pubmed/16990136
http://www.ncbi.nlm.nih.gov/pubmed/20706985
http://www.ncbi.nlm.nih.gov/pubmed/20706985
http://www.ncbi.nlm.nih.gov/pubmed/20706985
http://www.ncbi.nlm.nih.gov/pubmed/20706985
http://www.ncbi.nlm.nih.gov/pubmed/18599325
http://www.ncbi.nlm.nih.gov/pubmed/18599325
http://www.ncbi.nlm.nih.gov/pubmed/18599325
http://www.ncbi.nlm.nih.gov/pubmed/18602282
http://www.ncbi.nlm.nih.gov/pubmed/18602282
http://www.ncbi.nlm.nih.gov/pubmed/18602282
http://www.ncbi.nlm.nih.gov/pubmed/12522256
http://www.ncbi.nlm.nih.gov/pubmed/12522256
http://www.ncbi.nlm.nih.gov/pubmed/12612578
http://www.ncbi.nlm.nih.gov/pubmed/12612578
http://www.ncbi.nlm.nih.gov/pubmed/12612578
http://www.ncbi.nlm.nih.gov/pubmed/9338786
http://www.ncbi.nlm.nih.gov/pubmed/9338786
http://www.ncbi.nlm.nih.gov/pubmed/9338786
http://www.ncbi.nlm.nih.gov/pubmed/19253307
http://www.ncbi.nlm.nih.gov/pubmed/19253307
http://www.ncbi.nlm.nih.gov/pubmed/22028700/
http://www.ncbi.nlm.nih.gov/pubmed/22028700/
http://www.ncbi.nlm.nih.gov/pubmed/20954258
http://www.ncbi.nlm.nih.gov/pubmed/20954258
http://www.ncbi.nlm.nih.gov/pubmed/20954258
http://www.ncbi.nlm.nih.gov/pubmed/20954258
http://www.ncbi.nlm.nih.gov/pubmed/20954258
http://www.ncbi.nlm.nih.gov/pubmed/24039925
http://www.ncbi.nlm.nih.gov/pubmed/24039925
http://www.ncbi.nlm.nih.gov/pubmed/24039925
http://www.ncbi.nlm.nih.gov/pubmed/23071818
http://www.ncbi.nlm.nih.gov/pubmed/23071818
http://www.ncbi.nlm.nih.gov/pubmed/23071818
http://www.ncbi.nlm.nih.gov/pubmed/23071818
http://www.ncbi.nlm.nih.gov/pubmed/21765430
http://www.ncbi.nlm.nih.gov/pubmed/21765430
http://www.ncbi.nlm.nih.gov/pubmed/12477762/
http://www.ncbi.nlm.nih.gov/pubmed/12477762/


Modeling the dynamics of t helper 17 induction and differentiation 9
Copyright:

©2015 Carbo et al.

Citation: Carbo A, Hontecillas RH, Viladomiu MV, et al. Modeling the dynamics of t helper 17 induction and differentiation. MOJ Immunol. 2015;2(2):1‒6. 
DOI: 10.15406/moji.2015.02.00038

18.	 Ahern PP, Schiering C, Buonocore S, et al. Interleukin-23 drives 
intestinal inflammation through direct activity on T cells. Immunity. 
2010;33(2):279˗288.

19.	 El-Behi M, Ciric B, Dai H, et al. The encephalitogenicity of T(H)17 cells 
is dependent on IL-1- and IL-23-induced production of the cytokine 
GM-CSF. Nat Immunol. 2011;12(6):568˗575.

20.	 Codarri L, Gyulveszi G, Tosevski V, et al. RORgammat drives 
production of the cytokine GM-CSF in helper T cells, which is essential 
for the effector phase of autoimmune neuroinflammation. Nat Immunol. 
2011;12(6):560˗567.

21.	 Hong T, Xing J, Li L, et al. A mathematical model for the reciprocal 
differentiation of T helper 17 cells and induced regulatory T cells. PLoS 
Comput Biol. 2011;7(7):e1002122.

22.	 Mendoza L. A virtual culture of CD4+ T lymphocytes. Bull Math Biol. 
2013;75(6):1012˗1029.

23.	 Tartar DM, VanMorlan AM, Wan X, et al. FoxP3+RORgammat+ T 
helper intermediates display suppressive function against autoimmune 
diabetes. J Immunol. 2010;184(7):3377˗3385.

24.	 Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits 
T(H)17 cell differentiation by antagonizing RORgammat function. 
Nature. 2008;453(7192):236˗240.

25.	 Carbo A, Hontecillas R, Kronsteiner B, et al. Systems modeling 
of molecular mechanisms controlling cytokine-driven CD4+ T 
cell differentiation and phenotype plasticity. PLoS Comput Biol. 
2013;9(4):e1003027.

26.	 Carbo A, Hontecillas R, Andrew T, et al. Computational modeling 
of heterogeneity and function of CD4+ T cells. Front Cell Dev Biol. 
2014;2:31.

27.	 Carbo A, Hontecillas R, Andrew T, et al. Computational modeling 
of heterogeneity and function of CD4+ T cells. Front Cell Dev Biol. 
2014;2:31.

28.	 Quackenbush J. Microarray data normalization and transformation. Nat 
Genet. 2002;32 Suppl: 496˗501.

29.	 Marbach D, Prill RJ, Schaffter T, et al. Revealing strengths and 
weaknesses of methods for gene network inference. Proc Natl Acad Sci 
U S A. 2010;107(14):6286˗6291.

30.	 Wang J, Zhao YC, Lu YD, et al. Integrated bioinformatics analyses 
identify dysregulated miRNAs in lung cancer. Eur Rev Med Pharmacol 
Sci. 2014;18(16):2270˗2274.

31.	 Wray CJ, Ko TC, Tan FK. Secondary use of existing public microarray 
data to predict outcome for hepatocellular carcinoma. J Surg Res. 
2014;188(1):137˗142.

32.	 Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector 
T cell trilogy. Curr Opin Immunol. 2007;19(6):652˗657.

33.	 Zhou L, Lopes JE, Chong MMW, et al. TGF-[bgr]-induced Foxp3 
inhibits TH17 cell differentiation by antagonizing ROR[ggr]t function. 
Nature. 2008;453:236˗240.

34.	 Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways 
for the generation of pathogenic effector TH17 and regulatory T cells. 
Nature. 2006;441(7090):235˗238.

35.	 Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to 
induce proinflammatory TH17 cells. Nature. 2007;448:484˗487.

36.	 Zhou L, Ivanov II, Spolski R, et al. IL-6 Programs TH-17 Cell 
Differentiation by Promoting the Sequential Engagement of the IL-21 
and IL-23 Pathways. Nat Immunol. 2007;8(9):967˗974.

37.	 Foley JF. STAT3 Regulates the Generation of Th17 Cells. Sci STKE. 
2007;2007(380:tw113.

38.	 Harris TJ, Grosso JF, Yen H-R, et al. Cutting Edge: An In Vivo 
Requirement for STAT3 Signaling in TH17 Development and TH17-
Dependent Autoimmunity. J Immunol. 2007;179(7):4313˗4317.

39.	 Mathur AN, Chang HC, Zisoulis DG, et al. Stat3 and Stat4 
Direct Development of IL-17-Secreting Th Cells. J Immunol. 
2007;178(8):4901˗4907.

40.	 Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 Regulates Cytokine-
mediated Generation of Inflammatory Helper T Cells. J Biol Chem. 
2007;282(13):9358˗9363.

41.	 Ivanov II, McKenzie BS, Zhou L, et al. The Orphan Nuclear Receptor 
ROR³t Directs the Differentiation Program of Proinflammatory IL-17+ 
T Helper Cells. Cell. 2006;126(6):1121˗1133.

42.	 Ichiyama K, Yoshida H, Wakabayashi Y, et al. Foxp3 Inhibits 
ROR{gamma}t-mediated IL-17A mRNA Transcription 
through Direct Interaction with ROR{gamma}t. J Biol Chem. 
2008;283(25):17003˗17008.

43.	 Hoops S, Sahle S, Gauges R, et al. COPASI--a COmplex PAthway 
SImulator. Bioinformatics. 2006; 22(24):3067˗3074.

44.	 Kennedy JE, Eberhart R. Particle Swarm Optimization. Neural 
Networks, IEEE. International Conference. 1995;4:1942˗1948.

45.	 Xu R, Venayagamoorthy GK, Wunsch DC 2nd. Modeling of gene 
regulatory networks with hybrid differential evolution and particle 
swarm optimization. Neural Netw. 2007;20(8):917˗927.

46.	 Harris TJ, Grosso JF, Yen HR, et al. Cutting edge: An in vivo requirement 
for STAT3 signaling in TH17 development and TH17-dependent 
autoimmunity. J Immunol. 2007;179(7):4313˗4317.

47.	 Wu C, Yosef N, Thalhamer T, et al. Induction of pathogenic TH17 cells by 
inducible salt-sensing kinase SGK1. Nature. 2013;496(7446):513˗517.

48.	 Laurence A, O’Shea JJ. TH-17 differentiation: of mice and men. Nature 
Immunology. 2007;8:903˗905.

49.	 Passerini L, Allan SE, Battaglia M, et al. STAT5-signaling cytokines 
regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells 
and CD4+CD25- effector T cells. Int Immunol. 2008; 20(3):421˗431.

50.	 Wei L, Laurence A, Elias KM, et al. IL-21 is produced by Th17 cells and 
drives IL-17 production in a STAT3-dependent manner. J Biol Chem. 
2007;282(48):34605˗34610.

51.	 Griffith TS, Brunner T, Fletcher SM, et al. Fas ligand-induced apoptosis as 
a mechanism of immune privilege. Science. 2005;270(5239):1189˗1192.

52.	 Stassi G, De Maria R. Autoimmune thyroid disease: new models of cell 
death in autoimmunity. Nat Rev Immunol. 2002;2(3):195˗204.

53.	 Suvannavejh GC, Dal Canto MC, Matis LA, et al. Fas-mediated 
apoptosis in clinical remissions of relapsing experimental autoimmune 
encephalomyelitis. J Clin Invest. 2000;105(2):223˗231.

54.	 Wang M, Liang P. Interleukin-24 and its receptors. Immunology. 
2005;114(2):166˗170.

55.	 Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821˗832.

56.	 Westwell-Roper C, Nackiewicz D, Dan M, et al. Toll-like receptors and 
NLRP3 as central regulators of pancreatic islet inflammation in type 2 
diabetes. Immunol Cell Biol. 2014;92(4):314˗323.

57.	 Jankovic D, Ganesan J, Bscheider M, et al. The Nlrp3 
inflammasome regulates acute graft-versus-host disease. J Exp Med. 
2013;210(10):1899˗1910.

58.	 Besnard AG, Togbe D, Couillin I, et al. Inflammasome-IL-1-Th17 
response in allergic lung inflammation. J Mol Cell Biol. 2012;4(1):3˗10.

59.	 Duhen R, Glatigny S, Arbelaez CA, et al. Cutting edge: the pathogenicity 
of IFN-gamma-producing Th17 cells is independent of T-bet. J Immunol. 
2013;190(9):4478˗4482.

https://doi.org/10.15406/moji.2015.02.00038
http://www.ncbi.nlm.nih.gov/pubmed/20732640
http://www.ncbi.nlm.nih.gov/pubmed/20732640
http://www.ncbi.nlm.nih.gov/pubmed/20732640
http://www.ncbi.nlm.nih.gov/pubmed/21516111
http://www.ncbi.nlm.nih.gov/pubmed/21516111
http://www.ncbi.nlm.nih.gov/pubmed/21516111
http://www.ncbi.nlm.nih.gov/pubmed/21516112
http://www.ncbi.nlm.nih.gov/pubmed/21516112
http://www.ncbi.nlm.nih.gov/pubmed/21516112
http://www.ncbi.nlm.nih.gov/pubmed/21516112
http://www.ncbi.nlm.nih.gov/pubmed/21829337
http://www.ncbi.nlm.nih.gov/pubmed/21829337
http://www.ncbi.nlm.nih.gov/pubmed/21829337
http://www.ncbi.nlm.nih.gov/pubmed/23361399
http://www.ncbi.nlm.nih.gov/pubmed/23361399
http://www.ncbi.nlm.nih.gov/pubmed/20181889
http://www.ncbi.nlm.nih.gov/pubmed/20181889
http://www.ncbi.nlm.nih.gov/pubmed/20181889
http://www.ncbi.nlm.nih.gov/pubmed/18368049
http://www.ncbi.nlm.nih.gov/pubmed/18368049
http://www.ncbi.nlm.nih.gov/pubmed/18368049
http://www.ncbi.nlm.nih.gov/pubmed/23592971
http://www.ncbi.nlm.nih.gov/pubmed/23592971
http://www.ncbi.nlm.nih.gov/pubmed/23592971
http://www.ncbi.nlm.nih.gov/pubmed/23592971
http://www.ncbi.nlm.nih.gov/pubmed/25364738
http://www.ncbi.nlm.nih.gov/pubmed/25364738
http://www.ncbi.nlm.nih.gov/pubmed/25364738
http://www.ncbi.nlm.nih.gov/pubmed/25364738
http://www.ncbi.nlm.nih.gov/pubmed/25364738
http://www.ncbi.nlm.nih.gov/pubmed/25364738
http://www.ncbi.nlm.nih.gov/pubmed/12454644
http://www.ncbi.nlm.nih.gov/pubmed/12454644
http://www.ncbi.nlm.nih.gov/pubmed/20308593
http://www.ncbi.nlm.nih.gov/pubmed/20308593
http://www.ncbi.nlm.nih.gov/pubmed/20308593
http://www.ncbi.nlm.nih.gov/pubmed/25219825
http://www.ncbi.nlm.nih.gov/pubmed/25219825
http://www.ncbi.nlm.nih.gov/pubmed/25219825
http://www.ncbi.nlm.nih.gov/pubmed/24560427
http://www.ncbi.nlm.nih.gov/pubmed/24560427
http://www.ncbi.nlm.nih.gov/pubmed/24560427
http://www.ncbi.nlm.nih.gov/pubmed/17766098
http://www.ncbi.nlm.nih.gov/pubmed/17766098
http://www.nature.com/nature/journal/v453/n7192/full/nature06878.html
http://www.nature.com/nature/journal/v453/n7192/full/nature06878.html
http://www.nature.com/nature/journal/v453/n7192/full/nature06878.html
http://www.ncbi.nlm.nih.gov/pubmed/16648838
http://www.ncbi.nlm.nih.gov/pubmed/16648838
http://www.ncbi.nlm.nih.gov/pubmed/16648838
http://www.nature.com/nature/journal/v448/n7152/full/nature05970.html
http://www.nature.com/nature/journal/v448/n7152/full/nature05970.html
http://www.ncbi.nlm.nih.gov/pubmed/17581537
http://www.ncbi.nlm.nih.gov/pubmed/17581537
http://www.ncbi.nlm.nih.gov/pubmed/17581537
http://stke.sciencemag.org/content/2007/380/tw113.abstract
http://stke.sciencemag.org/content/2007/380/tw113.abstract
http://www.ncbi.nlm.nih.gov/pubmed/17878325
http://www.ncbi.nlm.nih.gov/pubmed/17878325
http://www.ncbi.nlm.nih.gov/pubmed/17878325
http://www.ncbi.nlm.nih.gov/pubmed/17404271
http://www.ncbi.nlm.nih.gov/pubmed/17404271
http://www.ncbi.nlm.nih.gov/pubmed/17404271
http://www.ncbi.nlm.nih.gov/pubmed/17277312
http://www.ncbi.nlm.nih.gov/pubmed/17277312
http://www.ncbi.nlm.nih.gov/pubmed/17277312
http://www.ncbi.nlm.nih.gov/pubmed/16990136
http://www.ncbi.nlm.nih.gov/pubmed/16990136
http://www.ncbi.nlm.nih.gov/pubmed/16990136
http://www.ncbi.nlm.nih.gov/pubmed/18434325
http://www.ncbi.nlm.nih.gov/pubmed/18434325
http://www.ncbi.nlm.nih.gov/pubmed/18434325
http://www.ncbi.nlm.nih.gov/pubmed/18434325
http://www.ncbi.nlm.nih.gov/pubmed/17032683
http://www.ncbi.nlm.nih.gov/pubmed/17032683
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?tp=&arnumber=488968&url
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?tp=&arnumber=488968&url
http://www.ncbi.nlm.nih.gov/pubmed/17714912
http://www.ncbi.nlm.nih.gov/pubmed/17714912
http://www.ncbi.nlm.nih.gov/pubmed/17714912
http://www.ncbi.nlm.nih.gov/pubmed/17878325
http://www.ncbi.nlm.nih.gov/pubmed/17878325
http://www.ncbi.nlm.nih.gov/pubmed/17878325
http://www.ncbi.nlm.nih.gov/pubmed/23467085
http://www.ncbi.nlm.nih.gov/pubmed/23467085
http://www.nature.com/ni/journal/v8/n9/abs/ni0907-903.html
http://www.nature.com/ni/journal/v8/n9/abs/ni0907-903.html
http://www.ncbi.nlm.nih.gov/pubmed/18270368
http://www.ncbi.nlm.nih.gov/pubmed/18270368
http://www.ncbi.nlm.nih.gov/pubmed/18270368
http://www.ncbi.nlm.nih.gov/pubmed/17884812
http://www.ncbi.nlm.nih.gov/pubmed/17884812
http://www.ncbi.nlm.nih.gov/pubmed/17884812
http://www.ncbi.nlm.nih.gov/pubmed/7502042
http://www.ncbi.nlm.nih.gov/pubmed/7502042
http://www.ncbi.nlm.nih.gov/pubmed/11913070
http://www.ncbi.nlm.nih.gov/pubmed/11913070
http://www.ncbi.nlm.nih.gov/pubmed/10642601
http://www.ncbi.nlm.nih.gov/pubmed/10642601
http://www.ncbi.nlm.nih.gov/pubmed/10642601
http://www.ncbi.nlm.nih.gov/pubmed/15667561
http://www.ncbi.nlm.nih.gov/pubmed/15667561
http://www.ncbi.nlm.nih.gov/pubmed/20303873
http://www.ncbi.nlm.nih.gov/pubmed/24492799
http://www.ncbi.nlm.nih.gov/pubmed/24492799
http://www.ncbi.nlm.nih.gov/pubmed/24492799
http://www.ncbi.nlm.nih.gov/pubmed/23980097
http://www.ncbi.nlm.nih.gov/pubmed/23980097
http://www.ncbi.nlm.nih.gov/pubmed/23980097
http://www.ncbi.nlm.nih.gov/pubmed/22147847
http://www.ncbi.nlm.nih.gov/pubmed/22147847
http://www.ncbi.nlm.nih.gov/pubmed/23543757
http://www.ncbi.nlm.nih.gov/pubmed/23543757
http://www.ncbi.nlm.nih.gov/pubmed/23543757


Modeling the dynamics of t helper 17 induction and differentiation 10
Copyright:

©2015 Carbo et al.

Citation: Carbo A, Hontecillas RH, Viladomiu MV, et al. Modeling the dynamics of t helper 17 induction and differentiation. MOJ Immunol. 2015;2(2):1‒6. 
DOI: 10.15406/moji.2015.02.00038

60.	 Mei Y, Carbo, A, Hoops S, et al. ENISI SDE: A novel web-based 
stochastic modeling tool for computational biology. Transactions of 
Computational Biology and Bioinformatics In Press. 2013.

61.	 Liu SS, Ding Y, Lou JQ. NLRP3, a Potential Therapeutic Target for Type 
2 Diabetes? Cardiovasc Drugs Ther. 2014;28(4):391˗392.

62.	 Altschuler SJ, Wu LF. Cellular heterogeneity: do differences make a 
difference? Cell. 2010; 141(4):559˗563.

https://doi.org/10.15406/moji.2015.02.00038
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6732524
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6732524
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6732524
http://www.ncbi.nlm.nih.gov/pubmed/24867817
http://www.ncbi.nlm.nih.gov/pubmed/24867817
http://www.ncbi.nlm.nih.gov/pubmed/20478246/
http://www.ncbi.nlm.nih.gov/pubmed/20478246/

	Title
	Abstract
	Keywords
	Abbreviations
	Introduction
	Materials and methods 
	Algorithms for data treatment 
	IPA Analysis 
	Model parameter estimation 
	Sensitivity Analysis 
	Creation of an IL-24 and NLRP3 knock-out systems 

	Results and discussion 
	Modeling approach and objectives 
	Microarray data analyses 
	 Network Inference and Analysis 
	Mathematical model implementation and calibration 
	In silico experimentation and computational modeling predictions 
	IL-24 modulates the balance between FOXP3 and RORγt during Th17 differentiation 
	NLRP3 knockout Th17 cells result in an impaired production of IL-17A 

	Conclusions
	Acknowledgements
	Conflicts of interest 
	Funding
	References
	Figure 1
	Figure 2 
	Figure 3
	Figure 4
	Figure 5 
	Figure 6
	Figure 7
	Figure 8

