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Abbreviations
TLR:  Toll–Like Receptor; NOD: Nucleotide–Binding 

Oligomerization Domain; CT: Cholera Toxin; LPS: Lipo 
Polysaccharide; CARDs: Caspase Activating and Recruitment 
Domains; APCs: Antigen Presenting Cells; MAPK: Mitogen 
Activated Protein Kinase; NLR: Nod Like Receptor; PYDs: Pyrin 
Domains; OMV: Outer Membrane Vesicle

Introduction
Vibrio cholerae  is a highly motile non–invasive Gram–negative 

organism which colonizes the small intestine and produces a potent 
enterotoxin called cholera toxin (CT)–a major virulence determinant 
that causes massive intestinal fluid loss leading to profuse watery 
diarrheal syndrome associated with V. cholerae infection.1,2 There are 
more than 200 serogroups of V. cholerae recognized on the basis of 
their lipo polysaccharide (LPS) O side chain antigenic structures.3 
There are two serogroups of V. cholerae O1 and O139 which can infect 
humans and cause epidemic and pandemic cholera. The serogroup V. 
cholerae  O1 is subdivided into two biotypes, classical and El Tor 
depending on biochemical properties and phage sensitivity. Each 
biotype can be divided into three serotypes depending on expression 
of three O–antigens (A, B, and C): (1) Ogawa (A and B), (2) Inaba (A 
and C) and (3) Hikojima (A, B and C).4,5 The pathogenesis of cholera 
is a multi factorial process and involves several genes encoding 
virulence factors that aid the pathogen in its colonization, coordinated 
expression of virulence factors, and toxin action. The expression of 
virulence factors in V. cholerae is coordinately regulated by ToxR, an 
inner membrane protein which regulates the ctxAB structural gene 
and CT expression.6,7 ToxR also regulates on which requires another 
Trans membrane transcriptional activator TcpP to synergistically 
activate the expression of ToxT.8,9 ToxR acts as a master regulator and 
remains under the control of environmental factors.10 ToxR directly 
regulates the expression of the outer membrane porin proteins OmpU 
and OmpT in a separate branch of the ToxR cascade independent 
of TcpP and ToxT.11,12 which has been suggested to be involved in 
adherence during pathogenesis.7,13 Toxinogenicity is predominating 
pathogenic factor, but colonization is clearly an essential step in 
disease progression. The organism must colonize the small bowel to 

release CT. No diarrhea is seen when volunteers are fed strains of V. 
cholerae, which is unable to colonize.14

Cholera has traditionally considered as a non–inflammatory 
diarrheal disease but some evidence point towards an inflammatory 
component in the pathogenesis of the disease.15–22 including 
increased infiltration of neutrophils, degranulation of mast cells and 
eosinophils, and production of some innate defense molecules during 
acute cholera patients.20–26 Cholera patients are often treated with 
antimicrobials or antibiotics.27,28 (Table 1), but the growing trend of 
antibiotics resistance or poorly designed vaccines is craving the right 
component of vaccine development which could lead to the effective 
immunization. However, after elimination of several toxin genes, 
including the CT from vaccine wild–type strains, mild to moderate 
diarrhea is inevitable in volunteers.29–31 The reactogenicity of vaccine 
strains in volunteer studies points towards the presence of some other 
component besides CT that can elicit a host response. The adaptive 
immunity against V. cholerae and CT has been investigated intensely 
for development of effective vaccine.26,32,33 Little is known about the 
innate defense mechanisms during cholera that may be involved in 
the early defense against the infection and also in the initiation of the 
adaptive immune response. However, beyond the understanding of 
the mode of action of CT, we need an extensive knowledge regarding 
the response of the host to V. cholerae infection.

Table 1 Using of Antibiotics in cholera treatment

Antibiotics used for cholera treatment

Doxycycline.119

Tetracycline.120

Ciprofloxacin.121

Azithromycin.122,123

Erythromycin.124

Chloramphenicol.125

Furazolidone.126

Sulfaguanidine.125

Orfloxacin.120

Trimethoprim- sulfamethoxazole.128
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Abstract

Cholera remains a significant health problem in developing countries due to its ability 
to spread rapidly and kills a high proportion of those affected. The disease is produced 
by Vibrio cholerae that colonizes in the human intestine and causes inflammatory diarrheal 
diseases. The reactogenicity of vaccine strain causes a serious problem in clinical settings. 
Besides the study of organisms V. cholerae, a thorough understanding of the host response 
following V. cholerae infection is indispensable to combat the disease from newly emerging 
threats. Elucidation of molecular mechanisms of V. cholerae induced inflammatory response 
through Toll–like receptor (TLR) and nucleotide–binding oligomerization domain (NOD) 
will eventually help to design proper vaccine or drugs for appropriate targets.
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V. cholerae induced inflammatory response

Cell culture models were initiated in hopes of developing an in 
vitro system for the study of host–V. cholerae  communication and 
adherence. The interaction of the host with V. cholerae and other 
Vibrio species has been examined in a number of intestinal epithelial 
cells models like HT29–18N2, Caco–2, T84, HeLa and Int407 
cells.34–37and documented the release of pro inflammatory cytokines 
upon  V. cholerae  infection in intestinal epithelial cells.38 Recently 
another experimental model using H4 cells– non transformed human 
fetal primary small intestinal epithelial cells provided preliminary 
evidence that CT induces an enhanced secretion mediated in part by 
a developmental up–regulation of the cAMP response in immature 
versus mature human small intestine.39 Rodriguez et al has shown 
that studies on delineating the factor responsible for reactogenicity 
of vaccine strains with the highly differentiated mucin–secreting cell 
line HT29–18N2.40 Once V. cholerae has been detected by epithelial 
cells, a number of signal transduction pathways are activated within 
the infected cells and initiate defensive responses by the host.37,41–46 
These signaling pathways usually result in the activation of nuclear 
factor kappa B (NF–kB) transcription factors important in driving 
expression of genes involved in the inflammatory response.38,43,47 
Certain  V. cholerae  strains as well as CT may stimulate a modest 
intestinal inflammatory response.15,18,25 In a mouse pulmonary 
model of infection,.48 have shown the evidence of inflammation 
including infiltration of polymorpho nuclear leukocytes (PMNs), 
tissue damage, localized release of tumor necrosis factor (TNF)–α, 
interlukins (IL)–6 and the neutrophil chemo attractant protein 
macrophage inflammatory proteins (MIP)–2 by accessory toxins of 
V. cholerae. Recently, V. cholerae mediated host inflammation is also 
scored in the neonatal mouse model.49 Similarly, V. cholerae vaccine 
strains promote symptoms consistent with inflammation in human 
volunteers.50 In altogether, these evidences suggest the existence of 
an inflammatory component in the diarrhea of clinical cholera. But, 
CT has shown immune deviating properties in macrophages.51,52 
However, little is known about the role of  V. cholerae  in initiating 
the innate inflammatory response and the potential contribution of 
individual  V. cholerae  components to cytokine induction through 
toll–like receptors (TLRs) and nucleotide–binding oligomerization 
domain (NODs) receptors.

TLR and NOD pathway

Recognition and uptake of microbes are based on germ line–
encoded pattern recognition receptors (PRRs) like Toll–like receptors 
(TLR) and nucleotide–binding oligomerization domain (NOD) 
receptors.53 These receptors detect conserved microbial structures 
that are not found in the host. A common aim of the innate immunity 
is to rapidly detect and stop the spread of a pathogen. In contrast 
to the innate immunity, adaptive or acquired immunity is specific 
to foreign antigens. Adaptive immunity offers pathogen–specific 
detection and targeted immune response, which is usually effective 
also against those microbes that may evade innate immune responses. 
Moreover, the immunological memory offers rapid, specific and 
efficient immune response upon re infection. The development of 
adaptive immunity requires a complex co–operation between antigen 
presenting cells (APCs) (macrophages, dendritic cells, and B cells) 
and T lymphocytes.54–56

TLRs play a crucial role in microbial recognition, induction 
of antimicrobial genes, cytokines, chemokines and the control of 
adaptive immune responses.57–59 NOD (NOD1 and NOD2)–like 
receptors (NLRs) are a physically distinct family of intracellular 
PRRs, which is apparently in the context of microbial reorganization 

and the induction of inflammatory response.58,60,61 TLRs and NODs are 
widely expressed in various cell types of the gastrointestinal mucosa 
and immune cells (monocytes/macrophages or dendritic cells) 
participating in host defense against microbes.

TLRs and NODs function initiate by following ways:

a.	 Recognition of molecular patterns expressed on pathogens

b.	 Activation of signaling pathways through cascade upon 
recognition of molecular patterns

c.	 Initiation of secretion of pro/anti–inflammatory cyto– and 
chemokines that control adaptive immune system

d.	 Induction of antimicrobial functions

TLRs signaling

The TLRs were found to be essential for anti–fungal and anti–
bacterial defense in the Drosophila innate immunity system.62–64

Mammalian TLRs are categorized by three common structural 
features:

a.	 A ligand binding extracellular domain with leucine rich repeats 
(LRR)

b.	 A short trans membrane region

c.	 A highly homologous cytoplasmic Toll/interleukin 1 receptor 
(TIR) domain initiates downstream signaling cascades.65,66

TLRs have emerged as the first–line innate immune surveillance 
systems to detect the presence of foreign pathogens and activate 
the cytokine responses that occur during infection, and to a large 
extent, shape the whole of the inflammatory response with all 
its consequences, both beneficial and harmful. To date, 11TLR 
homolog’s have recognized and their Ligands are peptidoglycan.67 
LPS.68 diacyl– or triacyl–lipopeptide.69 dsRNA.70 un methylated CpG 
DNA motifs.71 and flagellin.72TLR Ligands could be a major focus 
of adjuvant research for modern vaccine combinations tailored to 
specific pathogens.73

TLR signaling is activated by ligand binding, which initiates the 
dimerization or multimerization of TLRs. Subsequently, TIR–domain–
containing adaptor molecules are recruited to the intracellular domain 
of TLRs. Until now, five adaptor molecules have been identified:

i.	 Myeloid differentiation factor 88 (MyD88)

ii.	 TIR–domain containing adaptor inducing IFN–β (TRIF)

iii.	 TIR–domain containing adaptor protein (TIRAP)

iv.	 TRIF–related adaptor molecule (TRAM)

v.	 Sterile alpha and HEAT/Armadillo motif protein (SARM).74

The activation of downstream signaling is mediated by MyD88 
and TRIF.75 TLR signaling results in the activation and nuclear 
translocation of NF–kB, interferon regulatory factors (IRFs) and 
mitogen activated protein kinase (MAPK)–regulated transcription 
factors.66 These transcription factors regulate the expression of pro–
inflammatory cytokines, chemokines and IFNs.

NODs signaling

Nod1 and Nod2, two cytosolic mammalian proteins, have been 
recognized as intracellular peptidoglycan receptors.76 Both contains 
caspase activating and recruitment domains (CARDs) at their NH2–
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termini, a single CARD domain in Nod1 and two tandem CARD 
domains containing receptor–interacting proteins (Rip)2 in Nod2, 
followed by a nucleotide binding domain and a series of tandem LRRs. 
The interaction between Nod1 and Rip2 initiates CARD–CARD 
association. Rip2 binds to the IkB kinase (IKK) complex, which is 
the essential component in the pathway that leads to the activation 
of NF–kB. Rip2 is also involved in the TLR–mediated activation of 
NF–kB, suggesting a convergence of the signal transduction pathways 
that are activated by TLRs and Nod1.77 Nod1 detects peptidoglycan 
from gram–negative bacteria, whereas Nod2 can detect peptidoglycan 
from both gram–negative and gram–positive bacteria.78,79 Nod–like 
receptor (NLRP) protein scan form inflammasomes in activated 
cells through interaction of their pyrin domains (PYDs) with other 
pyrin–containing proteins, namely the adaptor ASC, which allows the 
formation of the inflammasome complex, recruiting and activating 
caspase–1, resulting in the processing of the potent inflammatory 
cytokines.60,80

Activation of TLR and NOD pathways by V. cholerae expressed 
molecular patterns LPS: LPS, one of the major components of the outer 
membrane of V. cholerae induces pro inflammatory cytokines through 
MyD88–dependent TLR4 signaling pathway in macrophages.81,82 
LPS could not activate the TLR4 signaling efficiently in epithelial 
cells.83 due to lack of CD14 and TLR4 on epithelial cells.84 V. cholerae 
mediated pro inflammatory response is also attenuated in mice with 
mutation in TLR4 gene.85 MsbB has functional lipid A acyltransferase 
which is prerequisite for transferring a 3–hydroxylaureate to the 
glucosamine disaccharide in V. cholerae LPS.86 The under acylated 
LPS is generated in msbB mutant strain of V. cholerae which 
exhibits less endotoxicity due to reduced stimulation of TLR4.87 
During the acute stage of  V. cholerae  infection, LPS–TLR4 
mediated inflammatory responses could be blocked by host derived 
LPLUNC1.88  V. cholerae  phosphatidylserine decarboxylase (PSD) 
is capable of activating host innate immunity through TLR4.89 and it 
could have potential application for vaccine adjuvant.

Outer membrane vesicle (OMV):  OMV, which is considered as 
an alternative vaccine candidate for cholera infection also contains 
a relative large amount of LPS, peptidoglycan and CT.90–93 OMV 
interacts with epithelial cells and leads to inflammatory response.94 
TLR2 signaling pathway is activated by OMV of  V. cholerae  in 
human embryonic kidney cell line.88 The quorum sensing regulator 
hapR regulates OMVs which might influence immune response 
through NOD1 and NOD2 pathway.95 V. cholerae OMV activates pro 
inflammatory response through NOD1 pathway and promotes T cell 
polarization for adaptive immunity.94

Flagellins:  V. cholerae  possesses a single polar flagellum which 
contains a flagellar core protein enclosed by a membrane sheath that 
appears to be contiguous with the outer membrane.96 The flagellar 
filament itself is comprised of multiple flagellin subunits, which 
are highly related and conserved. The flagellin genes are organized 
in two unlinked chromosomal loci, flaAC and flaEDB.97 The flaA 
gene is indispensable for assembly and function of the flagellum 
since a mutation in flaA but not in the remaining four flaBCDE 
genes, abolished flagella production and motility.97 Motility of  V. 
cholerae  plays a crucial role in colonization of the bacteria to the 
small intestinal mucosa.98 FlaA, FlaB and FlaD are recognized by the 
innate immune system through TLR5 and induces pro inflammatory 
cytokines through NF–kB and MAPK pathway.47,99 The inflammation 
induced by flagellins could be a major determinant for the  V. 
cholerae vaccine reactogenicity.

Outer membrane proteins (Omp):  The outer membrane protects 
Gram–negative bacteria against a harsh environment. The embedded 

proteins are crtical to the bacterial cell, such as translocation of 
solute or protein, as well as signal transduction. Expression of the 
OmpU outer membrane protein of V. cholerae is positively regulated 
by master regulator toxR.11,100 OmpU has adhesive properties which 
could play an important role in the pathogenesis of cholera.13 OmpU 
could potentially activates pro inflammatory response in epithelial 
cells.43,46 and macrophages. However, pre–exposure of OmpU could 
potentially block the TLR4–LPS induced cytokines.101

Accessory toxins:  The main concern with non–CT–producing  V. 
cholerae  is that these strains are often sufficiently virulent to make 
them unsafe for use as live attenuated vaccines.15,102,103 The actions 
of accessory toxins of V. cholerae  are responsible for the increased 
inflammation and contribute to the reactogenicity of live attenuated 
vaccine strains.29,85,104,105.

V. cholerae  Hemolysin (HlyA) is an extracellular membrane–
damaging and water–soluble cytolytic exotoxin with a molecular 
mass of 65 kDa.4,106,107 which contains two contiguous lectin domains, 
a β–trefoil domain homologous to the galactose–binding site of ricin 
and a β–prism domain homologous to the carbohydrate–binding site 
of the plant lectin jacalin.108 The C terminus β–prism lectin domain, 
considered as the only functional sugar–binding site of HlyA, is 
susceptible to proteolytic deletion.109 HlyA protein exhibits a dual effect 
on macrophage function. TLR4–Myd88 signaling is activated by β–
prism lectin domain of HlyA whereas TLR2 signaling is up–regulated 
by HlyA cytolytic protein domain for continuity of macrophage 
activation.110 It induces apoptosis independent of TLR signaling like 
most of the toxin.111 and activates the resting macrophages through 
TLR.110  V. cholerae  hemolysine plus NOD1/NOD2 ligand induces 
NLPR3 inflammasome regulated caspae1 activation through NF–kB 
pathway.112

V. cholerae  secreted cytolysin (VCC) is another β–barrel group 
pore forming toxin of 79kDa molecular mass. Under proteolytic 
activation it forms oligomers in the membrane bound stage only.113 
VCC acts as TLR2 Ligands in mast cells and activates adaptive 
immune response.114 A recent study has demostaterd that VCC is 
recognized by the host epithelial cells/macrophages and induces pro 
inflammatory response through TLR2/TLR6 dependent signaling 
pathway.115

The multifunctional–auto processing repeats–in–toxin (MARTX) 
bacterial protein toxins modulates the virulence Vibrio species and 
serve as delivery platforms for cytotoxic effect or domains. This family 
of toxins is defined by the presence of a cysteine protease domain 
(CPD), which proteolytically activates the  V. cholerae  MARTX 
toxin.116  V. cholerae  MARTX also induces NLRP3–dependent 
caspase–1 activation.112 but the detailed mechanism needs further 
investigation. These accessory toxins likely damage the cell membrane 
to transport the PAPMs into the cytosoland activates the inflammatory 
response in the infected sites through formation of inflammasome. V. 
cholerae  accessory toxins induce inflammatory responses through 
the infection of intestinal cells, which do not express TLRs or are 
insensitive to TLR signals (TLR2/4) to evoke tissue damage that may 
promote bacterial colonization.

Crosstalk between epithelial cells and immune cells 
during v. cholerae infection

V. cholerae  colonizes in the intestinal epithelial layer and 
is transcytosed by specialized micro folded (M) cells, which is 
responsible for mucosal immune response.117 V. cholerae associated 
molecular patterns are recognized by the PRR in the intestinal 
epithelial cells and produces host defense molecules like cytokines 
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and chemokines. The coordinated release of cytokines/chemokines by 
intestinal epithelial cells is crucial for activating intestinal mucosal 
inflammatory responses as well as mucosal innate and adaptive 
immune responses.  V. cholerae  or V. cholerae flagellin activated 
epithelial cells secretes intestinal dendritic cells (DCs) inducing 
chemokines and subsequently stimulates immature DC cells.118 
Therefore, DCs undergo maturation, which is associated with high 
surface expression of co–stimulatory molecules as well as different 
secreted immuno modulatory cytokines through MAPK and Signal 
Transducer and Activator of Transcription (STAT) pathway that drives 
the naïve T cells into T–helper (Th) 1 or 2 cells.118 A recent study 
has shown that V. cholerae produced OMV also activates DCs and 
primes a distinct population of CD4+ T cells that secrete IL–17.94 
In addition to Th1 or Th2 cells, DCs have also been implicated in 
the promotion of Th17 cells. Therefore, epithelial cells secreted 
inflammatory cytokines induce complex cross–talk between epithelial 
cells and immune cells and promote the pro inflammatory response by 
polarizing Th2/Th17 response during acute stage of cholera.26,94,118. To 
understand the reactogenicity vaccine strain, it is necessary to address 
the involvement of TLRs/NODs and V. cholerae associated molecular 
patterns in crosstalk between epithelial cells and immune cells.

Conclusion
V. cholerae coordinates the regulation of virulence gene functions 

and modulates the host innate immune response during the acute stage 
of infection. The progression of the diseases is extremely complex 
and multi factorial in nature. The recent studies demonstrate that V. 
cholerae  induces nuclear responses through signal transduction 
pathway and subsequently activation of pro inflammatory cytokines 
modulated by  V. cholerae  secretary factors, virulence and motility 
may explain some of its reacotogenic mechanisms. Reactogenicity 
is a major concern with V. cholerae vaccine in the present scenario. 
Therefore, deletion of the accessory toxins and flagellin genes from 
the vaccine strain could be a way to develop the live attenuated 
vaccine for V. cholerae as well as other enteric pathogens. However, 
there is a significant gap in understanding the V. cholerae mediated 
inflammation through TLR or NOD pathways which needs further 
investigation. The interaction of  V. cholerae  expressed factors 
with TLR/NOD could be an emerging field in mucosal innate 
immunity and the future studies revealing the role of PAMPs in  V. 
cholerae pathogenesis will be helpful to generate safe, live–attenuated 
and non–reacotogenic V. cholerae vaccine strain.
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