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Abstract

Cholera remains a significant health problem in developing countries due to its ability
to spread rapidly and kills a high proportion of those affected. The disease is produced
by Vibrio cholerae that colonizes in the human intestine and causes inflammatory diarrheal
diseases. The reactogenicity of vaccine strain causes a serious problem in clinical settings.
Besides the study of organisms V. cholerae, a thorough understanding of the host response
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following V. cholerae infection is indispensable to combat the disease from newly emerging

threats. Elucidation of molecular mechanisms of V. cholerae induced inflammatory response
through Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD)
will eventually help to design proper vaccine or drugs for appropriate targets.
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Abbreviations

TLR: Toll-Like Receptor; NOD: Nucleotide-Binding
Oligomerization Domain; CT: Cholera Toxin; LPS: Lipo
Polysaccharide; CARDs: Caspase Activating and Recruitment

Domains; APCs: Antigen Presenting Cells; MAPK: Mitogen
Activated Protein Kinase; NLR: Nod Like Receptor; PYDs: Pyrin
Domains; OMV: Outer Membrane Vesicle

Introduction

Vibrio cholerae is a highly motile non—invasive Gram-—negative
organism which colonizes the small intestine and produces a potent
enterotoxin called cholera toxin (CT)—a major virulence determinant
that causes massive intestinal fluid loss leading to profuse watery
diarrheal syndrome associated with V. cholerae infection.!? There are
more than 200 serogroups of V. cholerae recognized on the basis of
their lipo polysaccharide (LPS) O side chain antigenic structures.’
There are two serogroups of V. cholerae O1 and O139 which can infect
humans and cause epidemic and pandemic cholera. The serogroup V.
cholerae O1 is subdivided into two biotypes, classical and El Tor
depending on biochemical properties and phage sensitivity. Each
biotype can be divided into three serotypes depending on expression
of three O—antigens (A, B, and C): (1) Ogawa (A and B), (2) Inaba (A
and C) and (3) Hikojima (A, B and C).** The pathogenesis of cholera
is a multi factorial process and involves several genes encoding
virulence factors that aid the pathogen in its colonization, coordinated
expression of virulence factors, and toxin action. The expression of
virulence factors in V. cholerae is coordinately regulated by ToxR, an
inner membrane protein which regulates the ctxAB structural gene
and CT expression.®” ToxR also regulates on which requires another
Trans membrane transcriptional activator TcpP to synergistically
activate the expression of ToxT.*’ ToxR acts as a master regulator and
remains under the control of environmental factors.'” ToxR directly
regulates the expression of the outer membrane porin proteins OmpU
and OmpT in a separate branch of the ToxR cascade independent
of TcpP and ToxT."™!? which has been suggested to be involved in
adherence during pathogenesis.”'® Toxinogenicity is predominating
pathogenic factor, but colonization is clearly an essential step in
disease progression. The organism must colonize the small bowel to

release CT. No diarrhea is seen when volunteers are fed strains of V.
cholerae, which is unable to colonize.'*

Cholera has traditionally considered as a non—inflammatory
diarrheal disease but some evidence point towards an inflammatory
component in the pathogenesis of the disease.”?* including
increased infiltration of neutrophils, degranulation of mast cells and
eosinophils, and production of some innate defense molecules during
acute cholera patients.”*?* Cholera patients are often treated with
antimicrobials or antibiotics.””?* (Table 1), but the growing trend of
antibiotics resistance or poorly designed vaccines is craving the right
component of vaccine development which could lead to the effective
immunization. However, after elimination of several toxin genes,
including the CT from vaccine wild—type strains, mild to moderate
diarrhea is inevitable in volunteers.?*3! The reactogenicity of vaccine
strains in volunteer studies points towards the presence of some other
component besides CT that can elicit a host response. The adaptive
immunity against V. cholerae and CT has been investigated intensely
for development of effective vaccine.?3233 Little is known about the
innate defense mechanisms during cholera that may be involved in
the early defense against the infection and also in the initiation of the
adaptive immune response. However, beyond the understanding of
the mode of action of CT, we need an extensive knowledge regarding
the response of the host to V. cholerae infection.

Table | Using of Antibiotics in cholera treatment

Antibiotics used for cholera treatment

Doxycycline.!®

Tetracycline.'?

Ciprofloxacin.'?!

Azithromycin.'?2'2
Erythromycin.'?*

Chloramphenicol.'®

Furazolidone.'?

Sulfaguanidine.'®

Orfloxacin.'?®

Trimethoprim- sulfamethoxazole.'?®
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V. cholerae induced inflammatory response

Cell culture models were initiated in hopes of developing an in
vitro system for the study of host-V. cholerae communication and
adherence. The interaction of the host with V. cholerae and other
Vibrio species has been examined in a number of intestinal epithelial
cells models like HT29-18N2, Caco—2, T84, Hela and Int407
cells.***7and documented the release of pro inflammatory cytokines
upon V. cholerae infection in intestinal epithelial cells.*® Recently
another experimental model using H4 cells— non transformed human
fetal primary small intestinal epithelial cells provided preliminary
evidence that CT induces an enhanced secretion mediated in part by
a developmental up-regulation of the cAMP response in immature
versus mature human small intestine.*> Rodriguez et al has shown
that studies on delineating the factor responsible for reactogenicity
of vaccine strains with the highly differentiated mucin—secreting cell
line HT29-18N2.%’ Once V. cholerae has been detected by epithelial
cells, a number of signal transduction pathways are activated within
the infected cells and initiate defensive responses by the host.?7#1-46
These signaling pathways usually result in the activation of nuclear
factor kappa B (NF-kB) transcription factors important in driving
expression of genes involved in the inflammatory response.’®447
Certain V. cholerae strains as well as CT may stimulate a modest
intestinal inflammatory response.'>'®» In a mouse pulmonary
model of infection,.*® have shown the evidence of inflammation
including infiltration of polymorpho nuclear leukocytes (PMNs),
tissue damage, localized release of tumor necrosis factor (TNF)—o,
interluking (IL)-6 and the neutrophil chemo attractant protein
macrophage inflammatory proteins (MIP)-2 by accessory toxins of
V. cholerae. Recently, V. cholerae mediated host inflammation is also
scored in the neonatal mouse model.* Similarly, V. cholerae vaccine
strains promote symptoms consistent with inflammation in human
volunteers.” In altogether, these evidences suggest the existence of
an inflammatory component in the diarrhea of clinical cholera. But,
CT has shown immune deviating properties in macrophages.’'*
However, little is known about the role of V. cholerae in initiating
the innate inflammatory response and the potential contribution of
individual V. cholerae components to cytokine induction through
toll-like receptors (TLRs) and nucleotide-binding oligomerization
domain (NODs) receptors.

TLR and NOD pathway

Recognition and uptake of microbes are based on germ line—
encoded pattern recognition receptors (PRRs) like Toll-like receptors
(TLR) and nucleotide-binding oligomerization domain (NOD)
receptors.” These receptors detect conserved microbial structures
that are not found in the host. A common aim of the innate immunity
is to rapidly detect and stop the spread of a pathogen. In contrast
to the innate immunity, adaptive or acquired immunity is specific
to foreign antigens. Adaptive immunity offers pathogen—specific
detection and targeted immune response, which is usually effective
also against those microbes that may evade innate immune responses.
Moreover, the immunological memory offers rapid, specific and
efficient immune response upon re infection. The development of
adaptive immunity requires a complex co—operation between antigen
presenting cells (APCs) (macrophages, dendritic cells, and B cells)
and T lymphocytes.>*>¢

TLRs play a crucial role in microbial recognition, induction
of antimicrobial genes, cytokines, chemokines and the control of
adaptive immune responses.’’>* NOD (NODI and NOD2)-like
receptors (NLRs) are a physically distinct family of intracellular
PRRs, which is apparently in the context of microbial reorganization
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and the induction of inflammatory response.”®¢*! TLRs and NODs are
widely expressed in various cell types of the gastrointestinal mucosa
and immune cells (monocytes/macrophages or dendritic cells)
participating in host defense against microbes.

TLRs and NODs function initiate by following ways:
a. Recognition of molecular patterns expressed on pathogens

b. Activation of signaling pathways through cascade upon
recognition of molecular patterns

c. Initiation of secretion of pro/anti—inflammatory cyto— and
chemokines that control adaptive immune system

d. Induction of antimicrobial functions
TLRs signaling

The TLRs were found to be essential for anti—fungal and anti—
bacterial defense in the Drosophila innate immunity system.®*

Mammalian TLRs are categorized by three common structural
features:

a. A ligand binding extracellular domain with leucine rich repeats
(LRR)

b. A short trans membrane region

c. A highly homologous cytoplasmic Toll/interleukin 1 receptor
(TIR) domain initiates downstream signaling cascades.®%

TLRs have emerged as the first-line innate immune surveillance
systems to detect the presence of foreign pathogens and activate
the cytokine responses that occur during infection, and to a large
extent, shape the whole of the inflammatory response with all
its consequences, both beneficial and harmful. To date, 11TLR
homolog’s have recognized and their Ligands are peptidoglycan.®’
LPS.®® diacyl- or triacyl-lipopeptide.® dsRNA.” un methylated CpG
DNA motifs.”" and flagellin.””TLR Ligands could be a major focus
of adjuvant research for modern vaccine combinations tailored to
specific pathogens.”

TLR signaling is activated by ligand binding, which initiates the
dimerization or multimerization of TLRs. Subsequently, TIR—domain—
containing adaptor molecules are recruited to the intracellular domain
of TLRs. Until now, five adaptor molecules have been identified:

i. Myeloid differentiation factor 88 (MyD88)
ii. TIR—domain containing adaptor inducing IFN—f (TRIF)
iii. TIR—domain containing adaptor protein (TIRAP)
iv. TRIF-related adaptor molecule (TRAM)
v. Sterile alpha and HEAT/Armadillo motif protein (SARM).™

The activation of downstream signaling is mediated by MyD88
and TRIF.” TLR signaling results in the activation and nuclear
translocation of NF-kB, interferon regulatory factors (IRFs) and
mitogen activated protein kinase (MAPK)-regulated transcription
factors.® These transcription factors regulate the expression of pro—
inflammatory cytokines, chemokines and IFNs.

NOD:s signaling

Nodl and Nod2, two cytosolic mammalian proteins, have been
recognized as intracellular peptidoglycan receptors.”® Both contains
caspase activating and recruitment domains (CARDs) at their NH2—
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termini, a single CARD domain in Nodl and two tandem CARD
domains containing receptor—interacting proteins (Rip)2 in Nod2,
followed by a nucleotide binding domain and a series of tandem LRRs.
The interaction between Nodl and Rip2 initiates CARD-CARD
association. Rip2 binds to the IkB kinase (IKK) complex, which is
the essential component in the pathway that leads to the activation
of NF-kB. Rip2 is also involved in the TLR—mediated activation of
NF—kB, suggesting a convergence of the signal transduction pathways
that are activated by TLRs and Nod1.”” Nod1 detects peptidoglycan
from gram—negative bacteria, whereas Nod2 can detect peptidoglycan
from both gram-negative and gram—positive bacteria.”®” Nod-like
receptor (NLRP) protein scan form inflammasomes in activated
cells through interaction of their pyrin domains (PYDs) with other
pyrin—containing proteins, namely the adaptor ASC, which allows the
formation of the inflammasome complex, recruiting and activating
caspase—1, resulting in the processing of the potent inflammatory
cytokines.5%8

Activation of TLR and NOD pathways by V. cholerae expressed
molecular patterns LPS: LPS, one of the major components of the outer
membrane of V. cholerae induces pro inflammatory cytokines through
MyD88—dependent TLR4 signaling pathway in macrophages.®'?
LPS could not activate the TLR4 signaling efficiently in epithelial
cells.® due to lack of CD14 and TLR4 on epithelial cells.® V. cholerae
mediated pro inflammatory response is also attenuated in mice with
mutation in TLR4 gene.®® MsbB has functional lipid A acyltransferase
which is prerequisite for transferring a 3-hydroxylaureate to the
glucosamine disaccharide in V. cholerae LPS.* The under acylated
LPS is generated in msbB mutant strain of V. cholerae which
exhibits less endotoxicity due to reduced stimulation of TLR4.%
During the acute stage of V. cholerae infection, LPS-TLR4
mediated inflammatory responses could be blocked by host derived
LPLUNCIL.% V. cholerae phosphatidylserine decarboxylase (PSD)
is capable of activating host innate immunity through TLR4.% and it
could have potential application for vaccine adjuvant.

Outer membrane vesicle (OMV): OMYV, which is considered as
an alternative vaccine candidate for cholera infection also contains
a relative large amount of LPS, peptidoglycan and CT.**** OMV
interacts with epithelial cells and leads to inflammatory response.*
TLR2 signaling pathway is activated by OMV of V. cholerae in
human embryonic kidney cell line.® The quorum sensing regulator
hapR regulates OMVs which might influence immune response
through NOD1 and NOD?2 pathway.” V. cholerae OMV activates pro
inflammatory response through NOD1 pathway and promotes T cell
polarization for adaptive immunity.**

Flagellins: V. cholerae possesses a single polar flagellum which
contains a flagellar core protein enclosed by a membrane sheath that
appears to be contiguous with the outer membrane.’® The flagellar
filament itself is comprised of multiple flagellin subunits, which
are highly related and conserved. The flagellin genes are organized
in two unlinked chromosomal loci, flaAC and flaEDB.”” The flaA
gene is indispensable for assembly and function of the flagellum
since a mutation in flaA but not in the remaining four flaBCDE
genes, abolished flagella production and motility.”” Motility of V.
cholerae plays a crucial role in colonization of the bacteria to the
small intestinal mucosa.”® FlaA, FlaB and FlaD are recognized by the
innate immune system through TLRS and induces pro inflammatory
cytokines through NF—kB and MAPK pathway.*"* The inflammation
induced by flagellins could be a major determinant for the V.
cholerae vaccine reactogenicity.

Outer membrane proteins (Omp): The outer membrane protects
Gram-negative bacteria against a harsh environment. The embedded

Copyright:
©2024 Bandyopadhaya et al. 3

proteins are crtical to the bacterial cell, such as translocation of
solute or protein, as well as signal transduction. Expression of the
OmpU outer membrane protein of V. cholerae is positively regulated
by master regulator toxR."1% OmpU has adhesive properties which
could play an important role in the pathogenesis of cholera.'* OmpU
could potentially activates pro inflammatory response in epithelial
cells.*# and macrophages. However, pre—exposure of OmpU could
potentially block the TLR4-LPS induced cytokines.'”!

Accessory toxins: The main concern with non—CT—producing V.
cholerae is that these strains are often sufficiently virulent to make
them unsafe for use as live attenuated vaccines.'>!%>1% The actions
of accessory toxins of V. cholerae are responsible for the increased
inflammation and contribute to the reactogenicity of live attenuated
vaccine strains.?$5104105,

V. cholerae Hemolysin (HlyA) is an extracellular membrane—
damaging and water—soluble cytolytic exotoxin with a molecular
mass of 65 kDa.*!%!7 which contains two contiguous lectin domains,
a P—trefoil domain homologous to the galactose—binding site of ricin
and a f—prism domain homologous to the carbohydrate—binding site
of the plant lectin jacalin.'® The C terminus f—prism lectin domain,
considered as the only functional sugar—binding site of HIyA, is
susceptible to proteolytic deletion.!” Hly A protein exhibits a dual effect
on macrophage function. TLR4-Myd88 signaling is activated by p—
prism lectin domain of HlyA whereas TLR2 signaling is up—regulated
by HIyA cytolytic protein domain for continuity of macrophage
activation.'® It induces apoptosis independent of TLR signaling like
most of the toxin.!"" and activates the resting macrophages through
TLR.M V. cholerae hemolysine plus NOD1/NOD2 ligand induces
NLPR3 inflammasome regulated caspael activation through NF-kB
pathway.'"?

V. cholerae secreted cytolysin (VCC) is another f—barrel group
pore forming toxin of 79kDa molecular mass. Under proteolytic
activation it forms oligomers in the membrane bound stage only.'*
VCC acts as TLR2 Ligands in mast cells and activates adaptive
immune response.''* A recent study has demostaterd that VCC is
recognized by the host epithelial cells/macrophages and induces pro
inflammatory response through TLR2/TLR6 dependent signaling
pathway.'"

The multifunctional-auto processing repeats—in—toxin (MARTX)
bacterial protein toxins modulates the virulence Vibrio species and
serve as delivery platforms for cytotoxic effect or domains. This family
of toxins is defined by the presence of a cysteine protease domain
(CPD), which proteolytically activates the V. cholerae MARTX
toxin.!"® ¥V choleraet MARTX also induces NLRP3-dependent
caspase—1 activation.'” but the detailed mechanism needs further
investigation. These accessory toxins likely damage the cell membrane
to transport the PAPMs into the cytosoland activates the inflammatory
response in the infected sites through formation of inflammasome. V.
cholerae accessory toxins induce inflammatory responses through
the infection of intestinal cells, which do not express TLRs or are
insensitive to TLR signals (TLR2/4) to evoke tissue damage that may
promote bacterial colonization.

Crosstalk between epithelial cells and immune cells
during v. cholerae infection

V. cholerae colonizes in the intestinal epithelial layer and
is transcytosed by specialized micro folded (M) cells, which is
responsible for mucosal immune response.''” V. cholerae associated
molecular patterns are recognized by the PRR in the intestinal
epithelial cells and produces host defense molecules like cytokines
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and chemokines. The coordinated release of cytokines/chemokines by
intestinal epithelial cells is crucial for activating intestinal mucosal
inflammatory responses as well as mucosal innate and adaptive
immune responses. V. cholerae or V. cholerae flagellin activated
epithelial cells secretes intestinal dendritic cells (DCs) inducing
chemokines and subsequently stimulates immature DC cells.!"
Therefore, DCs undergo maturation, which is associated with high
surface expression of co—stimulatory molecules as well as different
secreted immuno modulatory cytokines through MAPK and Signal
Transducer and Activator of Transcription (STAT) pathway that drives
the naive T cells into T-helper (Th) 1 or 2 cells."® A recent study
has shown that V. cholerae produced OMV also activates DCs and
primes a distinct population of CD4+ T cells that secrete 1L—17.%*
In addition to Thl or Th2 cells, DCs have also been implicated in
the promotion of Thl7 cells. Therefore, epithelial cells secreted
inflammatory cytokines induce complex cross—talk between epithelial
cells and immune cells and promote the pro inflammatory response by
polarizing Th2/Th17 response during acute stage of cholera.?***!%, To
understand the reactogenicity vaccine strain, it is necessary to address
the involvement of TLRs/NODs and V. cholerae associated molecular
patterns in crosstalk between epithelial cells and immune cells.

Conclusion

V. cholerae coordinates the regulation of virulence gene functions
and modulates the host innate immune response during the acute stage
of infection. The progression of the diseases is extremely complex
and multi factorial in nature. The recent studies demonstrate that V.
cholerae induces nuclear responses through signal transduction
pathway and subsequently activation of pro inflammatory cytokines
modulated by V. cholerae secretary factors, virulence and motility
may explain some of its reacotogenic mechanisms. Reactogenicity
is a major concern with V. cholerae vaccine in the present scenario.
Therefore, deletion of the accessory toxins and flagellin genes from
the vaccine strain could be a way to develop the live attenuated
vaccine for V. cholerae as well as other enteric pathogens. However,
there is a significant gap in understanding the V. cholerae mediated
inflammation through TLR or NOD pathways which needs further
investigation. The interaction of V. cholerae expressed factors
with TLR/NOD could be an emerging field in mucosal innate
immunity and the future studies revealing the role of PAMPs in V.
cholerae pathogenesis will be helpful to generate safe, live—attenuated
and non-reacotogenic V. cholerae vaccine strain.
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