

A number of cytokine gene polymorphisms have been shown to be important for the development of T1D both at the level of the immune system and at the level of the target β -cells.^{8-17,20} The actual mechanism of β -cell destruction is still unclear, however, according to the available cytokine genetic studies, β -cell destruction might be predicted, Figure 1.^{8-14,18-20}

Few inflammatory proteins have been demonstrated to be critical for T1D development *in vivo*.^{17,18} The genetic susceptibility of polymorphisms in Interferon-gamma (IFN- γ) CA-repeat, Interleukin-6 (IL-6 G (-174) C in the promoter region,⁹ Transforming Growth factor- β 1 (TGF β 1T(29))C in codon 10¹⁰ are well established.²¹⁻²⁴

Knowledge of the genetic architecture of T1D has increased recently owing to large-scale genome-wide association (GWA) studies.²⁴⁻²⁷ Estimates of the contributions of the HLA region and numerous non-HLA loci across the genome now account for the understanding of the pathogenesis of the disease. Genetic risk for T1D is likely to be due to interactions between several susceptibility genes or loci in the same biochemical pathway.²⁸ Due to the elemental role of cytokines in inflammation and autoimmune onset of T1D, this study was performed to investigate the possible gene to gene interactions between the reported high risk cytokine gene polymorphisms⁸⁻¹⁰ and susceptible HLA class II alleles in the pathogenesis of T1D.

Materials and Methods

In this study, we enrolled 182 Caucasian patients with T1D who were studied for cytokine gene polymorphisms.^{8-10,28} This work was carried out upon receiving the Institution's ethical approval. Patients were segregated manually according to their HLA-DR3/4/DQ8 haplotype. The case group consisted of 98 patients with the same DR/DQ, and the control group consisted of 84 patients with HLA haplotypes other than DR3/4/DQ8.

Evaluating risk of developing T1D depends on determining an individual's HLA type, especially of the HLA DRB1 and DQB1 alleles. Individuals positive for HLA-DRB1*03 (DR3) and/or HLA-DRB1*04 (DR4) with DQB1*0302 (DQ8) have the highest risk of developing T1D.⁶

Cytokine gene polymorphism results for both case and control groups were typed accordingly. The frequency of matching genotypes of cytokine gene SNPs in both case and control groups were determined using Fisher's Exact Test.

Patients were segregated according to their HLA haplotypes, as previously reported.⁷ In order to examine the effect of cytokines, other than the well-established HLA effects, in genetic susceptibility, patients with HLA DR*030/DR*040/ DQ*0302 who met high risk cytokine genotypes were segregated as case group. In other words, by fixing our patients for well-established high risk HLA haplotypes (DR3/DR4/DQ8) only patients with high risk cytokine genotypes were considered as the positive case for gene to gene networking. All other HLA non- (DR3/DR4/DQ8) were considered as the control group.

Results

Patients were segregated according to their HLA DR/DQ haplotypes along with their associated reported high risk cytokine genes. Interestingly, 70 (71%) of cases (HLA-DR3/4DQ8) had similar reported high risk cytokine polymorphism genotypes (IFN- γ (122/121)/IL-6 (G/G)/TGF- β (C/T))^{9,10} compared to 28 (33%) in

control group (Non DR3/4/DQ8) who had none of the cytokines high risk gene, $p=<1$, Odd Ratio=5.0 with 95 % confidence interval = 2.7-9.4 (Table 1).

Table 1 Patients with type I diabetes were segregated according to their DR*0401/DR*0301/DQ*0302. Of eighty eight patients with high risk HLA 70 (71%) had high risk gene for studied cytokines in comparison. IFNG CA repeat 122/121, IL-6 (-174) G/G and TGFB (29) C/T were considered as the high risk as reported [9-11]. Majority of patients with high risk HLA DR3/4/DQ8 had had high risk genotype for IFNG, IL-6 as well as TGFB $p=<0.0001$, Odd Ratio=5.0 and 95 % CI=2.7-9.8

Haplotypes	+ve	-ve	p value	Odd Ratio	95 % CI
HLA-DR3/4/ DQ8/122/121 / G/G /C/T 70 (cases)	28		< 0.0001	5.00	2.7-9.4
Non (HLA-DR3/4/ DQ8/122/121 / G/G /C/T) (Controls)	28	56			

Conclusion

The incidence of T1D is increasing at an alarming rate and is reaching above that which is predicted by the IDF. HLA accounts for almost 50 % of genetic susceptibility to T1D. According to the recent GWAS, more than 60 non-MHC genes or loci are associated with susceptibility to T1D. Genetic networking stands for interactions between the associated genes or loci with T1D regardless of their genetic susceptibility share. Although HLA, insulin gene and PTPN22 indicate higher susceptibility to T1D,²⁹ other genes and loci seem to have a critical and significant impact in the pathogenesis of T1D.^{30,31}

This critically significant association of high risk HLA patients with high risk cytokine gene polymorphisms emphasize on the phenomenon of gene to gene networking in the pathogenesis of T1D. Considering the role of cytokines in the mediation of autoimmunity and inflammation, the current finding is valuable, however, further investigations with larger population studies is required.

Conflicts of Interest

This is to confer that the author has no any conflicts of interest or received any financial support for the presented manuscript.

Acknowledgements

We would like to acknowledge Professor John Todd, Cambridge University for providing full HLA data for Warren Families and his fruitful discussion. Authors would like to thank Dr. Anwar Mohammad for his time and help in the figure 1 and appreciate. Dr. Amal Hassan for her time and proof reading the article.

References

1. Jahromi MM. Type 1 diabetes – pathogenesis, genetics and immunotherapy. ISBN. 2011;978-953-307-362-0.
2. Jahromi MM. *Update of type 1 diabetes*. 2013.
3. International Diabetes Federation–UN Resolution. 2013; 61/225; 6th edn.
4. Aly TA, Baschal EE, Jahromi MM, et al. Haplotype analysis of the MHC identifies major new type 1a diabetes locus. *Diabetes*. 2008;57:770-776.
5. Jung MH, Yu J, Shin CH, et al. Association of cytotoxic T lymphocyte antigen-4 gene polymorphisms and HLA class II alleles with the development of type 1 diabetes in Korean children and adolescents. *J Korean Med Sci*. 2009;24(6):1004-1009.

6. Nguyen C, Varney MD, Harrison LC, et al. Definition of high-risk type 1 diabetes HLA-DR and HLA-DQ types using only three single nucleotide polymorphisms. *Diabetes*. 2013;62(6):2135–2140.
7. Jahromi MM. Haplotype specific alteration of diabetes MHC risk by olfactory receptor gene polymorphism. *Autoimmun Rev*. 2012;12(2): 270–274.
8. Cartwright N, Demaine A, Jahromi M, et al. A study of cytokine protein secretion, frequencies of cytokine expressing cells and IFN- γ gene polymorphisms in normal individuals. *Transplantation*. 1999;68(10):1546–1552.
9. Jahromi MM, Millward BA, Demaine AG. A polymorphism in the promoter region of the gene for interleukin-6 is associated with susceptibility to type 1 diabetes mellitus. *Interferon Cytokine Res*. 2000;20(10):885–888.
10. Jahromi MM, Millward BA, Demaine AG. Significant correlation between association of polymorphism in codon 10 of transforming growth factor- β 1 T (29) C with type 1 diabetes and patients with nephropathy disorder. *J Interferon Cytokine Res*. 2010;30(2): 59–66.
11. Sarkar SA, Lee CE, Victorino F, et al. Expression and regulation of chemokines in murine and human type 1 diabetes. *Diabetes*. 2012;61(2): 436–446.
12. Kimura H, Yoshizumi M, Ishii H, et al. Cytokine production and signaling pathways in respiratory virus infection. *Front Microbiol*. 2013;4:276.
13. Vacchelli E, Eggertmont A, Fridman WH, et al. Trial watch immunostimulatory cytokines. *Oncoimmunology*. 2012;1(4):493–506.
14. Rabinovitch A, Suarez-Pinzon WL. Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. *Reviews in Endocrine Metabolic Disorders*. 2003;4(3):291–299.
15. Davidson TS, DiPaolo RJ, Andersson J, et al. Cutting edge: IL-2 is essential for TGF- β -mediated induction of Foxp3 $+$ T regulatory cells. *J Immunol*. 2007;178(7):4022–4026.
16. Tarbell KV, Yamazaki S, Olson K, et al. CD25 $+$ CD4 $+$ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. *J Exp Med*. 2004;199(11):1467–1477.
17. Grunnet LG, Mandrup-Poulsen T. Cytokines and type 1 diabetes: A numbers game. *Diabetes*. 2011;60(3):697–699.
18. Malisan F, Testi R. The ganglioside GD3 as the Greek goddess Hecate: Several faces turned towards as many directions. *IUBMB Life*. 2005;57(7): 477–482.
19. Eizirik DL, Mandrup-Poulsen T. A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. *Diabetologia*. 2001;44(12): 2115–2133.
20. Jifri EH, Fathy ZM. Insulin-dependent diabetes mellitus and thalassaemia. *J Basic Appl Sci Res*. 2011;1(10):1327–1333.
21. Kikodze N, Pantsulaia I, Rekhviashvili Kh, et al. Cytokines and T regulatory cells in the pathogenesis of type 1 diabetes. *Georgian Med News*. 2013;222:29–35.
22. Saleh NM, Raj SM, Smyth DJ, et al. Genetic association analyses of atopic illness and proinflammatory cytokine genes with type 1 diabetes. *Diabetes Metab Res Rev*. 2011;27(8):838–843.
23. Xu WD, Zhou M, Peng H, et al. Lack of association of IL-6 polymorphism with rheumatoid arthritis/type 1 diabetes: a meta-analysis. *Joint Bone Spine*. 2013;80(5):477–481.
24. Sandholm N, Salem RM, McKnight AJ, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. *PLoS Genet*. 2012;8(9):e1002921.
25. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. *Nat Genet*. 2009;41(6):703–707.
26. Wei Z, Wang K, Qu HQ, et al. From disease association to risk assessment: an optimistic view from genome-wide association studies on type 1 diabetes. *PLoS Genet*. 2009;5(10): e1000678.
27. Holm P, Rydlander B, Luthman H, et al. European Consortium for IDDM Genome Studies (2004) Interaction and association analysis of a type 1 diabetes susceptibility locus on chromosome 5q11–q13 and the 7q32 chromosomal region in scandinavian families. *Diabetes*. 2004;53(6):1584–1591.
28. National Diabetes Data Group Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. *Diabetes*. 1979;28(12):1039–1057.
29. Howson JM, Cooper JD, Smyth DJ, et al. Evidence of gene–gene interaction and age-at-diagnosis effects in type 1 diabetes. *Diabetes*. 2012;61(11):3012–3017.
30. Frederiksen B, Liu E, Romanos J, et al. Investigation of the vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY). *J Steroid Biochem Mol Biol*. 2013;133:51–57.
31. Chen Z, Fei M, Fu D, Zhang L, et al. Association between cytotoxic T lymphocyte antigen-4 polymorphism and type 1 diabetes: a meta-analysis. *Gene*. 2013;516(2):263–270.