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resistant to conventional therapies, and the developments of safe and 
more powerful immunotherapeutic weapons carry many hopes to save 
life of the patients.

The majority of cancer immunotherapies take advantage of 
activating tumor-specific Cytotoxic T lymphocytes (CTLs), which 
specifically target and lyse of tumor cells. Tumors can develop 
multiple immunosuppressive mechanisms to evade the effector arms 
of the immune system, turning down most of the immunotherapeutic 
strategies. One of the most significant advances to date has been the 
identification and targeting of the immune checkpoints that inhibit 
effector T-cell function, such as Cytotoxic T lymphocyte-associated 
protein 4 (CTLA4), Programmed cell death-1 (PD-1).3 Clinical 
blockage of these checkpoints removes the T cell impediment, 
resulting in the reactivating of tumor-killing CTLs with durable object 
responses lasting for many years.1,4 More recently, pre-clinical data 
also demonstrate that a triple therapy in combination of anti-CTLA4, 
anti-PD-1 and therapeutic vaccination, provides a more profound 
rejection of experimental tumors.5

The immune checkpoints may actually be setup by the immune 
system itself to prevent the hyper-activating of T cells, while tumor cells 
utilize this mechanism to escape from the immune attack. Nevertheless, 
tumor cells are efficient in creating the immunosuppressive networks, 
turning their immune foes to their supporters. One of the major 
evidences is that dendritic cells (DCs), which are professional 
antigen-presenting cells to induce tumor-specific T cell responses, 
may associate with acquisition of tolerogenic/immunosuppressive 
activities in cancer settings.6 The cancer immunosuppressive milieu 
can render DCs to acquire regulatory instead of stimulatory capacities, 
by inducing molecular pathways activation in DCs. Removal the cells 
involved in immunosuppressive networks, such as regulatory T (Treg) 
cells and myeloid-derived suppressor cells (MDSCs); neutralization 
of the immunosuppressive factors, such as IL-10, TGF-β, IL-6, VEGF, 
M-CSF and PGE2; or turning off the signaling pathways in DCs, such 
as MAP kinases (MAPKs), JAK/STAT3 and PI3K/Akt, will provide 
novel approaches that synergize to augment antitumor immunity.

Another promising cancer immunotherapy field is adoptive cell 
therapy (ACT). ACT in clinical trials using type I cytotoxic CD8+T 
(Tc1) cells combined with lymph-depletion, active immunization and 
high doses IL-2 have resulted in objective responses in large portion 
of patients with advanced melanoma.2,7 However, durable complete 
responses observed in only 5-15% of treated patients, largely due 
to these Tc1 cells display end-effector and exhausted features and 
have a short lifespan after ACT.8 Immunologists are now working 
on identification and generation of novel T cells subsets,9-12 which 
possess enhanced persistence, appropriate homing, and acquisition 
of cytolytic effector function in vivo. We also believe that better 
understanding of the mechanisms of T helper cell-provided help to 
CD8+ T cell will substantially contribute to the optimal antitumor 
effect of ACT.13-15

One last issue for cancer immunotherapy is to ameliorate the 
current cancer vaccine protocols. Cancer vaccines have shown 
objective response in most clinical trials, but a question remains for 
why these increased numbers of circulating tumor-specific T cells in 
patients do not cause tumor shrinkage.16 One group looked insight into 
this problem recently and found that vaccination with gp100 peptide 
emulsified in IFA (commonly used in clinical trials) primed gp100-
specific CTLs, which were accumulated not in tumors but rather at the 
persisting, antigen-rich vaccination site.17 They subsequently proposed 
a short-lived formulation to overcome these limitations of IFA-
based vaccine. We also constructed a unique and universal adjuvant 
system to hyperactive antitumor immunity, which is a DNA-based 
vaccine containing six copies of target epitope in a linear alignment 
as an immunogen that flanked with optimized immunoadjuvants.18-20 
This construct is able to provoke superior immune response even 
much stronger than the DNA vaccine-priming and protein-boosting 
method.21 Therefore, innovative vaccination strategies will facilitate 
the improvement of current cancer immunotherapeutics.

Overall, we should appreciate the great efforts that have been 
made by our predecessors to develop more and more efficient 
cancer immunotherapies, which have finally turned into approved 
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By accumulating milestone discoveries in the field linking 

cancer and immunology, immunotherapy of cancer have now been 
transitioning from a promising possibility to many successful 
realities. In 2013, cancer immunotherapies have been deemed 
as the top “breakthrough of the year” in Science, the America’s 
leading journal, beating out all other contenders. The approval by 
FDA of two immunotherapeutic drugs, Ipilimumab (melanoma) 
and Provenge (prostate cancer), has generated more renewed 
interest for immunotherapy of cancer. Several recent clinical trials 
are increasingly encouraging and demonstrating the power of 
immunotherapeutic approaches to treat cancer, especially for very 
advanced and metastatic cancer. Although, a complete response 
remains infrequent (10-20%),1,2 cancer immunotherapy represents the 
last chance to treat those patients with metastatic diseases that are 
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immunotherapeutic drugs for clinical usage. Standing on their 
shoulders, we have the chances to working for the new generation 
immunotherapeutic approaches and bringing more fruitful results 
within reach, which will be real and near-term benefits to patients 
fighting against cancer.
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