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increase hippocampal and other brain regional resilience8 and therewith 
protect against cell death by inducing cell proliferation and maturation 
with enhanced neuronal reparation, neurogenesis and the growth and 
functioning of neurons in neurodegenerative disorders.9,10 Sampaio et 
al.11 in a review of the therapeutic applications of neurotrophic factors, 
particularly BDNF, postulate that they are essential for survival, 
development and maintenance of neurons of necessity for hindering 
the progress of impeding neurodegenerative staging in Alzheimer’s 
disease (AD) and other diseases of the ageing process. Disturbances/
adversity in relation to the BDNF gene e.g. Val66Met single 
nucleotide polymorphism, exacerbates AD symptoms and biomarkers 
and other neurodegenerative brain disorders.12 Taking these aspects 
into consideration, with a middle-aged cohort presenting enhanced 
risk-for-AD, the evidence showed that the carriage of the BDNF 
Met allele was associated with a sharper decline of episodic memory 
performance and executive function expressions and this decline 
was aggravated by the greater weight of the beta-amyloid biomarker 
(ibid). Furthermore, the reduced levels of BDNF in AD have been 
shown patients in comparisons with healthy control volunteers.13 
In this respect, gender was shown to moderate the relationship 
between Aβ, APOE genotype, and BDNF genotypes in predicting 
the severity of anxiety and depressive symptoms in cognitively 
normal older adults.14 Invariably, therapies increasing BDNF enhance 
resistance to AD: thus, keto-therapeutics promote mitochondrial 
respiration, advance neuronal long-term potentiation, increase BDNF 
expression, elevate GPR signaling, reduce oxidative stress, reduce 
inflammation, and induce protein post-translational modifications via 
lysine acetylation and β-hydroxybutyrylation15 while glial mGlu3R 
activation against Aβ neurotoxicity through stimulating the release 
of protective neurotrophins, e.g. secreted amyloid precursor protein-α 
and BDNF, and promotes amyloid removal from extracellular space 
by glia-mediated phagocytosis.16 Loss of BDNF integrity is linked 
to oxidative stress and white matter regional impediments with late 
onset bipolar disorder and AD.17 Physical exercise induces several 
positive alterations in the human epigenome, which have the potential 
to enhance cognitive and psychological health, improve muscular 
fitness, and lead to better ageing with improved quality of life in 
older age.18 In this regard, the physical exercise intervention has been 
shown repeatedly to alleviate symptom profiles and advance BDNF 
properties.19

The integrity, under a variety of intrinsic and extrinsic conditions, 
of hippocampal functioning and cellular intactness, during old age 

progression under conditions of stress when confronted critical life 
episodes or periods, appears to be modulated by the availability and 
accessibility of BDNF.20‒22 Over a wide range of neurologic and 
psychiatric disease states it is found that the integrity and concentrations 
of brain, serum and plasma BDNF is compromised, particularly under 
stressful conditions. Patients presenting mild cognitive impairment 
and dementia evidence lower levels of BDNF in serum than that 
expressed by healthy control individuals; concurrently, patients with 
dementia expressed smaller hippocampal volumes than the mild 
cognitive impairment patients and healthy control individuals.23 It 
has been found that acute forced-swim exposure or high-light open-
field exposure induced a stressor effect that caused an elevation in 
the density of BDNF-immunoreactive pyramidal neurons, possibly 
relating to the up-regulation of hypothalamus-pituitary-adrenal axis 
mobilization and short time memory processing associated with the 
stressful situation.24 Under conditions of provoked toxicity, BDNF 
is reduced yet several interventions may reverse these effects: e.g. 
administration of methanol, which induces retinal toxicity, produced 
a reduction in the number of retinal ganglion cell s, loss of neurons, 
neuronal nuclear antigen, activation of glial fibrillary acidic protein-
expressing cells, suppression of BDNF+ positive cells, increase 
in apoptosis and enhancement of nitric oxide release in serum and 
brain.25 However, all these expressions of toxicity were reversed 
by light-emitting diode (LED) therapy which reduced markedly 
retinal ganglion cell death, compared with methanol-treated rats and 
increased notably the number of BDNF positive cells in the visual 
cortex of LED-treated group, compared with the methanol-intoxicated 
and control groups. In a study of patients presenting moderate AD, the 
effects of a comprehensive intervention on plasma BDNF (pBDNF) 
and ADAS-Cognitive scores were assessed immediately after and 
six and 24 months later.26 At the time just after the comprehensive 
intervention both pBDNF and ADAS-Cognitive scores were reduced 
significantly, but while the latter worsened, the former increased 
versus baseline implying that may be a stressful event that prevented 
a return to homeostasis. Lead poisoning, mediated by enhanced 
oxidative stress, presents a serious risk factor for neurocognitive 
deficits, an illustration of accelerated ageing. Lead, administered to 
C57/Bl6 mice over 12 weeks, induced oxidative DNA damage and 
decreased cortical antioxidant biomarker as well as spatial learning 
and memory deficits with accompanying alterations to hippocampal 
BDNF-TrkB signaling27 these affected were alleviated by post-
exposure treatment with resveratrol. Finally, BDNF protects against 
the detrimental effects of acute stress.28,29
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Alzheimer’s disease (AD) presents a progressive, stage-dependent 

age-related neurodegenerative disorder that is characterized by 
aggregation of toxic forms of amyloid β peptide (Aβ). There is much 
support for the notion that that brain-derived neurotrophic factor 
(BDNF) mediates beneficial effects of exercise on neuroplasticity and 
cellular stress resistance.1‒3 BDNF is associated with neuroplasticity 
changes promoting health and well-being whereas these influences 
may be opposed by pro-inflammatory cytokines, key factors in 
neurodegenerative processes.4 Lower serum levels are linked to greater 
symptom, cognitive, impairment.5 Thus, interventions, as for example 
physical exercise, whether acute or chronic, endurance or resistance, 
promote the mobilization of BDNF and other neurotrophic factors6,7 
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In the laboratory environment, several experimental models have 
been shown to accelerate the ageing process through disruptions 
in the normal functioning and integrity of BDNF. Social isolation/
deprivation of rats and mice induces chronic stress and may be applied 
usefully as a laboratory animal model for neuropsychiatric disorders, 
such as schizophrenia spectrum disorders and clinical depression.30,31 
The decreased expression of BDNF has been observed generally 
as a consequence of these conditions with the downregulation of 
BDNF seemingly associated with increased anxiety-like symptoms/
behaviors among these rodents.32 In patients presenting newly-
diagnosed multiple schlerosis, the observed cognitive dysfunction was 
most especially noticeable in male patients concomitant with reduced 
concentrations of BDNF in plasma.33 In the context of stress-related 
alcohol consumption history, it is evident that acute stress decreased 
serum BDNF with the quantitative family history of alcohol use 
disorder (qFH) and age at first alcohol use in combination accounting 
for 15% of the variance in serum BDNF concentrations.34 Following a 
12-week regime of Yoga and Meditation based lifestyle intervention to 
intervene against stress and cellular ageing, it was observed that levels 
of total antioxidant capacity, telomerase activity β-endorphin, BDNF 
and sirtuin-1 were increased markedly and reactive oxygen species, 
8-hydroxy-2’-deoxyguanosine and interlekin-6, oxidative stress 
and pro-inflammatory biomarkers, after the Yoga and Meditation 
based lifestyle episode.35 Paired immunoglobulin-like receptor B is 
a functional receptor for myelin-associated inhibitory proteins that 
influences axon regeneration in injured brains. In an in vivo study 
of laboratory mice, it was observed that systemic (intraperitoneal) 
administration of TAT-PEP, a novel protein blocker of paired 
immunoglobulin-like receptor B which could pass through the blood 
brain barrier, had the effect of of enhancing motor capacity and 
spatial learning and memory in the animals, an effect that appeared 
to be mediated through regulation of BDNF secretion (Mi et al.36 
Li et al.37 for TAT-PEP effects in induced-ischemia). Hypertension, 
with detrimental effects on the cerebral microcirculation thereby 
promoting an acceleration of cerebral aging, presents an independent 
risk factor for both vascular cognitive impairment and AD. In young 
C57BL/6 mice with induced hypertension through chronic (four-
weeks) infusions of angiotensin II, It was found that hypertension and 
advanced ageing were related to the comparable decline in synaptic 
density in the stratum radiatum of the hippocampus of these mice, 
similar to ageing changes, the linked alterations of mRNA expression 
of several genes involved in regulation of neuronal function, 
including down-regulation of BDNF, Homer1, and Dlg4 was affected 
by hypertension influences.38

Regional brain and serum BDNF levels and telomere length as 
common mediating factors and potential therapeutic targets for HIV-
associated neurocognitive disorders and childhood trauma events 
offer illustrations of how the two biomarkers may be involved in 
the loss of health leading to premature ageing.39 Neurobiological 
trait abnormalities observed in individuals at genetic risk for bipolar 
depressive disorder may also presents biomarkers for accelerated 
ageing. For example, in a sample of bipolar patients and their 
siblings, telomere length was different between the three groups 
studied, patients, siblings and healthy volunteer controls with both 
patients and siblings showing a shorter telomeric length, T/S ratio, 
compared with the healthy controls.40 Further, patients showed also 
increased levels of interleukin-6 and interleukin-10, pro-inflammatory 
cytokines, compared with the controls as well as increased levels of 
interleukin-6 and CCL24, myeloid progenitor inhibitory factor 2 

encoded by the CCL24 gene, compared with their siblings. The C-C 
motif chemokine 11 levels were increased in siblings compared with 
the controls with similar tendencies found in the patients compared 
with the controls. Glutathione peroxidase activity was decreased also 
in the patients compared with the controls and siblings. Thus, even 
the unaffected siblings expressed features of accelerated ageing. Both 
DNA methylation, the addition of methyl groups to cytosines, and 
the shortening of telomeric length have emerged as indicators for an 
accelerated ageing and detrimental. In twenty-one medication-free 
male patients presenting mania and twenty age- and gender-matched 
healthy control volunteers, BDNF serum levels and telomeric were 
measured.41The manic patients exhibited shorter telomere lengths than 
the control group; the telomere length of patients increased with lithium 
treatment. Patients in the late stages of disorder presented shorter 
telomere length than those patients in the early stages and the control 
group. hTERT gene expression, telomerase reverse transcriptase 
which comprises the most important unit in the telomerase complex, 
levels were up-regulated in the mania patients and remission compared 
with the control group, although BDNF level differences did not reach 
significance. In the laboratory, male rats that were exposed to prenatal 
stress exhibited higher levels of methylation (Bdnf IV) in the medial 
prefrontal cortex in comparison with the non-stressed male rat control 
group and stressed female rats.42 Furthermore, the prenatally-stressed 
rats presented shorter telomere lengths than the control group in the 
medial prefrontal cortex. These results provide evidence of the long-
term impact of prenatal stress on brain DNA methylation and telomere 
biology thereby accelerating the ageing process with a deterioration of 
behavioral and health outcomes. 

In conclusion, there is a burgeoning consensus that the levels of 
estimated BDNF lessen during disorder conditions and ill-health 
whereas suitably effective interventional therapies restore, and 
may even exceed the baseline levels of the neurotrophic factor. 
Representatively, voluntary aerobic exercise promoted non-spatial 
memory to a greater extent in males, forced exercise increased 
hippocampus-dependent learning and memory, and induced 
heightened levels of BDNF compared controls in male and female 
participants.43 Finally, physical exercise exerts an essential influence 
for the prevention and intervention against age-related cognitive 
decline and mild cognitive impairment, together with a multitude 
of neurologic and psychiatric conditions, including type II diabetes, 
hypertension, heart disease, stroke, osteoporosis, cancers, and obesity 
with exercise-boosted serum/regional BDNF a major avenue for 
disorder amelioration.
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