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Introduction
The endocrine organs, including the thyroid gland, undergo 

important functional changes during aging and a prevalence of thyroid 
dysfunction is higher in the elderly as compared to the younger 
population.1,2 Advancing age is known to influence the formation of 
adenomatous goiter and thyroid cancer.3 The prevalence of thyroid 
nodules is increased in the elderly, reaching a frequency of nearly 
50% by the age of 65.4 Both prevalence and aggressiveness of thyroid 
cancer increase with age.2 Women are affected by thyroid nodule and 
cancer two to five times more often than men, but in age over 65 years 
a prevalence of thyroid cancer is higher in men.2‒5

Aging is a complex process involving biochemical and morphologic 
changes in single cells, in organs, and in the whole organism. One 
of the most generally accepted explanations of how aging occurs 
at the molecular level is the oxidative stress hypothesis.6 Reactive 
oxygen species (ROS) are widely considered to be a causal factor not 
only in aging but in a number of pathological conditions, including 
carcinogenesis. Aging, considered as an impairment of body functions 
over time, caused by the accumulation of molecular damage in DNA, 
proteins and lipids, is also characterized by an increase in intracellular 
oxidative stress due to the progressive decrease of the intracellular 
ROS scavenging.7 Oxidative damage to cellular macromolecules 
which induce cancer can also arise through overproduction of 
ROS and faulty antioxidant and/or DNA repair mechanisms.8 
Overproduction of ROS is associated with inflammation, radiation, 
and some other factors, including overload of some trace elements, in 

both blood and certain tissues, or deficiency of other trace elements 
with antioxidant properties.9‒15 Studies have shown that the imbalance 
in the composition of trace elements may cause different types 
of pathology. The importance of appropriate levels of many trace 
elements is indisputable, due to their beneficial roles when in specific 
concentration ranges, while on the other hand they can cause toxic 
effects with excessively high or low concentrations.12 

In our previous studies16‒24 the high mass fraction of iodine and 
some other trace element were observed in intact human thyroid gland 
when compared with their levels in non-thyroid soft tissues of the 
human body. However, some questions about the age-dependence of 
trace element mass fraction in thyroid of adult and, particularly, elderly 
females still remain unanswered. One valuable way to elucidate the 
situation is to compare the mass fractions of trace elements in young 
adult (the control group) with those in older adult and geriatric thyroid. 
The findings of the excess or deficiency of trace element contents in 
thyroid and the perturbations of their relative proportions in glands 
of adult and elderly males, may give an indication of their role in a 
higher prevalence of thyroid cancer in the elderly males.

The reliable data on trace element mass fractions in normal 
geriatric thyroid is apparently extremely limited. There are many 
studies regarding trace element content in human thyroid, using 
chemical techniques and instrumental methods.25‒30 However, the 
majority of these data are based on measurements of processed tissue 
and in many studies tissue samples are ashed before analysis. In 
other cases, thyroid samples are treated with solvents (distilled water, 
ethanol etc) and then are dried at a high temperature for many hours. 
There is evidence that certain quantities of trace elements are lost as 
a result of such treatment.31‒33 Moreover, only a few of these studies 
employed quality control using certified/standard reference materials 
(CRM/SRM) for determination of the trace element mass fractions. 
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Abstract

A prevalence of thyroid dysfunction is higher in the elderly as compared to the younger 
population. An excess or deficiency of trace element contents in thyroid play important role 
in goitro- and carcinogenesis of gland. The variation with age of the mass fraction of six 
trace elements (Br, Cu, Fe, Rb, Sr, and Zn) in intact (normal) thyroid of 71 males (mean age 
37.3 years, range 2.0-80) was investigated by 109Cd radionuclide-induced energy dispersive 
X-ray fluorescent analysis. Mean values ± standard error of mean for mass fractions (mg/
kg, on dry-mass basis) of the trace elements studied were: Br 10.8±1.3, Cu 4.25±0.20, Fe 
221±13, Rb 10.1±0.89, Sr 4.52±0.43, and Zn 122±5. This work revealed that there is a 
significant tendency for an increase in Zn mass fraction in normal male thyroid from age 
36 years to the eight decade. Moreover, a great disturbance of intrathyroidal trace element 
relationships with increasing age was found. Therefore, a goitrogenic and carcinogenic 
effect of excessive Zn level in the thyroid of old males and of disturbance in intrathyroidal 
trace element relationships with increasing age may be assumed
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This work had three aims. The primary purpose of this study was 
to determine reliable values for the bromine (Br), coper (Cu), iron 
(Fe), rubidium (Rb), strontium (Sr), and zinc (Zn) mass fractions 
in the normal (intact) thyroid of subjects ranging from children to 
elderly males using 109Cd radionuclide-induced energy-dispersive 
X-ray fluorescence analysis (109Cd EDXRF). The second aim was 
to compare the Br, Cu, Fe, Rb, Sr, and Zn mass fractions in thyroid 
gland of age group 2 (adults and elderly persons aged 36 to 80 years), 
with those of group 1 (from 2.0 to 35 years), and the final aim was to 
estimate the inter-correlations of trace elements in normal thyroid of 
males and their changes with age. All studies were approved by the 
Ethical Committee of the Medical Radiological Research Center.

Materials and methods
Samples of the human thyroid were obtained from randomly 

selected autopsy specimens of 71 males (European-Caucasian) aged 
2.0 to 80 years. All the deceased were citizens of Obninsk and had 
undergone routine autopsy at the Forensic Medicine Department of 
City Hospital, Obninsk. Age ranges for subjects were divided into 
two age groups, with group 1, 2.0-35 years (22.5±1.4 years, M±SEM, 
n=36) and group 2, 36-80 years (52.4±2.4 years, M±SEM, n=35). 
These groups were selected to reflect the condition of thyroid tissue 
in the children, teenagers, young adults and first period of adult life 
(group 1) and in the second period of adult life as well as in old age 
(group 2). The available clinical data were reviewed for each subject. 
None of the subjects had a history of an intersex condition, endocrine 
disorder, or other chronic disease that could affect the normal 
development of the thyroid. None of the subjects were receiving 
medications or used any supplements known to affect thyroid trace 
element contents. The typical causes of sudden death of most of 
these subjects included trauma or suicide and also acute illness 
(cardiac insufficiency, stroke, embolism of pulmonary artery, alcohol 
poisoning). All right lobes of thyroid glands were divided into two 
portions using a titanium scalpel.34 One tissue portion was reviewed 
by an anatomical pathologist while the other was used for the trace 
element content determination. A histological examination was used 
to control the age norm conformity as well as the unavailability of 
microadenomatosis and latent cancer. 

After the samples intended for trace element analysis were 
weighed, they were transferred to -20°C and stored until the day of 
transportation in the Medical Radiological Research Center, Obninsk, 
where all samples were freeze-dried and homogenized.35 The pounded 
sample weighing about 8 mg was applied to the piece of Scotch tape 
serving as an adhesive fixing backing.36,37

To determine the contents of the elements by comparison with a 
known standard, aliquots of commercial, chemically pure compounds 
were used.38,39 The microliter standards were placed on disks made of 
thin, ash-free filter papers fixed on the Scotch tape pieces and dried in 
a vacuum. Ten subsamples of the Certified Reference Material (CRM) 
IAEA H-4 (animal muscle) weighing about 8 mg were analyzed to 
estimate the precision and accuracy of results. The CRM IAEA H-4 
subsamples were prepared in the same way as the samples of dry 
homogenized thyroid tissue. 

The facility for EDXRF included an annular 109Cd source with 
an activity of 2.56 GBq, Si(Li) detector and portable multichannel 
analyzer combined with a PC. Its resolution was 270 eV at the 5.9 
keV line of 55Fe-source. The duration of the Br, Cu, Fe, Rb, Sr, and 

Zn measurements was 60 min. The intensity of Kα-line of Br, Cu, Fe, 
Rb, Sr, and Zn for samples and standards was estimated on calculation 
basis of the total area of the corresponding photopeak in the spectra. 
The trace element content was calculated by the relative way of 
comparing between intensities of Kα-lines for samples and standards. 
Details of the sample preparation, the facility and method of analysis 
were presented in our previous publication.36,37

All thyroid samples were prepared in duplicate, and mean values of 
trace element contents were used in final calculation. Using Microsoft 
Office Excel, a summary of the statistics, including, arithmetic mean, 
standard deviation, standard error of mean, minimum and maximum 
values, median, percentiles with 0.025 and 0.975 levels was calculated 
for trace element contents. The reliability of difference in the results 
between two age groups was evaluated by the parametric Student’s 
t-test and non-parametric Wilcoxon-Mann-Whitney U-test. For the 
construction of “age - trace element mass fraction” diagrams and the 
estimation of the Pearson correlation coefficient between different 
trace elements the Microsoft Office Excel programs were also used. 

Results 
Table 1 depicts our data for 6 trace elements in ten sub- samples 

of CRM IAEA H-4 (animal muscle) and the certified values of this 
material.

Table 1 EDXRF data Br, Fe, Rb, Sr, and Zn contents in the IAEA H-4 (animal 
muscle) reference material compared to certified values (mg/kg, dry mass 
basis)

Element Certified values   This work results

  Mean 95% Confidence 
Interval Type Mean±SD

Br 4.1 3.5-4.7 C 5.0±1.2

Cu 4 3.6-4.3 C 3.9±1.1

Fe 49 47-51 С 48±9

Rb 18 17-20 C 22±4

Sr 0.1 - N <1

Zn 86 83-90 C 90±5

Mean, Arithmetical Mean; SD,  Standard Deviation; C, Certified Values; N, Non-
Certified Values.

Table 2 represents certain statistical parameters (arithmetic mean, 
standard deviation, standard error of mean, minimal and maximal 
values, median, percentiles with 0.025 and 0.975 levels) of the Br, Cu, 
Fe, Rb, Sr, and Zn mass fractions in intact (normal) thyroid of males.

The comparison of our results with published data for the Br, Cu, 
Fe, Rb, Sr, and Zn contents in the human thyroid is shown in Table 3.

To estimate the effect of age on the trace element contents we 
examined two age groups, described above (Table 4). Figure 1 shows 
the individual data sets for the Br, Cu, Fe, Rb, Sr, and Zn mass fraction 
in all samples of thyroid, and also lines of trend with age. The data of 
inter-correlation calculations (values of r - coefficient of correlation) 
including all trace elements identified by us are presented in Table 5.
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Figure 1 Data sets of individual Br, Cu, Fe, Rb, Sr, and Zn mass fraction values in intact thyroid of males and their trend lines.

Table 2 Some statistical parameters of Br, Cu, Fe, Rb, Sr, and Zn mass fraction (mg/kg, dry mass basis) in intact thyroid of male 

Gender Element Mean SD SEM Min Max Median P 0.025 P 0.975

Males Br 10.8 10 1.3 1.9 54 8.05 2.33 42

n=71 Cu 4.25 1.48 0.2 1.1 7.5 4.15 1.78 1.39

Fe 221 102 13 47.1 502 224 58.4 419

Rb 10.1 6.96 0.89 1.8 43 8.6 2.65 27.5

Sr 4.52 3.27 0.43 0.1 14 3.55 0.443 12.4

  Zn 122 41 5.2 35.4 221 115 57.2 201

M, Arithmetic Mean; SD, Standard Deviation; SEM, Standard Error of Mean; Min, Minimum Value; Max, Maximum Value; P 0.025 - percentile with 0.025 level, P 
0.975 - percentile with 0.975 level

https://doi.org/10.15406/mojgg.2017.01.00028


Age-related changes of some trace element contents in intact thyroid of males investigated by energy 
dispersive x-ray fluorescent analysis

136
Copyright:

©2017 Zaichick et al.

Citation: Zaichick V, Zaichick S. Age-related changes of some trace element contents in intact thyroid of males investigated by energy dispersive x-ray 
fluorescent analysis. MOJ Gerontol Ger. 2017;1(5):133‒140. DOI: 10.15406/mojgg.2017.01.00028

Table 3 Median, minimum and maximum value of means Br, Cu, Fe, Rb, Sr, and Zn contents in normal thyroid according to data from the literature in comparison 
with our results (mg/kg, dry mass basis)

Element Published data (Reference) This work

Median Minimum Maximum

of means of means of means

  (n)* M or M±SD, (n)** M or M±SD, (n)** M±SD

Br 18.1 (11) 5.12 (44) [25] 284±44 (14) [26] 10.8±10.0

Cu 6.1 (57) 1.42 (120)  [27] 220±22 (10) [28] 4.25±1.48

Fe 252 (21) 56 (120)  [27] 2444±700 (14) [26] 221±102

Rb 12.3 (9) ≤0.85 (29) [29] 294±191 (14) [26] 10.1±7.0

Sr 0.73 (9) 0.55±0.26 (21) [30] 46.8±4.8 (4) [28] 4.52±3.27

Zn 118 (51) 32 (120) [27] 820±204 (14) [26] 122±41

M, Arithmetic Mean; SD, Standard Deviation; (N)*, Number of All References; (N)**, Number of Samples.

Table 4 Differences between mean values (M±SEM) of Br, Cu, Fe, Rb, Sr, and Zn mass fraction (mg/kg, dry mass basis) in normal male thyroid of two age groups 
(AG)

Element Female thyroid tissue   Ratio

  AG1 2.0-35 Years N=36 AG2 36-80 Years N=35 T-Test P£ U-Test P AG2 To AG1

Br 8.79±1.53 12.6±2.0 0.14 >0.05 1.43

Cu 3.93±0.27 4.58±0.28 0.098 >0.05 1.17

Fe 222±18 221±18 0.963 >0.05 1

Rb 10.4±1.4 9.65±1.09 0.682 >0.05 0.93

Sr 4.15±0.51 4.94±0.71 0.273 >0.05 1.19

Zn 112±7 135±7 0.024 ≤.1 1.21

M, Arithmetic Mean; SEM, Standard Error of Mean; T-Test, Student’s T-Test U-Test Wilcoxon-Mann Whitney U-Test Sstatistically Significant Values Are in Bold

Table 5 Intercorrelations of the chemical element mass fractions in the intact thyroid of male of three age groups (r - coefficient of correlation)

Element Br Cu Fe Rb Sr Zn

2-35 years

Br 1 -0.206 0.059 0.148 0.380a 0.518b

Cu -0.206 1 0.420a 0.364a -0.349a -0.102

Fe 0.059 0.420a 1 0.254 0.312a 0.291a

Rb 0.148 0.364a 0.254 1 -0.028 0.067

Sr 0.380a -0.349a 0.312a -0.028 1 0.335a

Zn 0.518b -0.102 0.291a 0.067 0.335a 1

36-80 years

Br 1 0.398a 0.241 0.563b 0.234 0.297

Cu 0.398a 1 0.442a 0.187 -0.058 0.399a

Fe 0.241 0.442a 1 0.09 -0.166 -0.103

Rb 0.563b 0.187 0.09 1 0.361a 0.233

Sr 0.234 -0.058 -0.166 0.361a 1 -0.042

Zn 0.297 0.399a -0.103 0.233 -0.042 1
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Element Br Cu Fe Rb Sr Zn

2-80 years

Br 1 0.285a 0.15 0.299a 0.302a 0.408b

Cu 0.285a 1 0.413b 0.273a -0.147 0.218

Fe 0.15 0.413b 1 0.197 0.072 0.133

Rb 0.299a 0.273a 0.197 1 0.112 0.098

Sr 0.302a -0.147 0.072 0.112 1 0.174

Zn 0.408b 0.218 0.133 0.098 0.174 1

Sstatistically significant values, a p≤0.05, b  p≤0.01

Table Continued....

Discussion
A set of existing international CRM prepared from the soft tissues 

of humans and animals is extremely limited. As is was previously 
discussed [36] 97% of the self-absorption in the dry sample of human 
tissue is due to the content of bulk elements: carbon (C), nitrogen 
(N), oxygen (O), phosphorus (P), and sulfur (S), as well as main 
electrolytes: calcium (Ca), chlorine (Cl), and sodium (Na). The 
content of these elements and the mass density of muscle and thyroid 
in humans are virtually identical.37 Accordingly, the use of CRM IAEA 
H-4 as a CRM for the analysis of samples of thyroid tissue can be seen 
as quite acceptable. Good agreement of the Br, Cu, Fe, Rb, Sr, and Zn 
contents analyzed by EDXRF with the certified data of CRM IAEA 
H-4 (Table 1) indicates an acceptable accuracy of the results obtained 
in the study of trace elements of the thyroid presented in Tables 2-5.

The obtained means for Br, Cu, Fe, Rb, Sr, and Zn mass fraction, 
as shown in Table 3, agree well with the medians of mean values cited 
by other researches for the human thyroid, including samples received 
from persons who died from different non-thyroid diseases.24‒30 
A number of values for chemical element mass fractions were not 
expressed on a dry mass basis by the authors of the cited references. 
However, we calculated these values using published data for water 
(75%)40 and ash (4.16% on dry mass basis)41 contents in thyroid of 
adults. 

A strongly pronounced tendency of age-related increase in Zn 
mass fraction was observed in thyroid of males (Table 4). In second 
group of males the mean Zn mass fraction in thyroids was 1.21 
times higher than in thyroids of the first age group. There were no 
statistically significant differences between the Br, Cu, Fe, Rb, and 
Sr mass fractions within different age-groups. No published data 
referring to age-related changes of Br, Cu, Fe, Rb, Sr, and Zn mass 
fractions in human thyroid was found.

A significant direct correlation between the Zn and Br, Zn and 
Fe, Zn and Sr, Br and Sr, Cu and Fe, Cu and Ru, Fe and Sr mass 
fractions as well as an inverse correlation between Cu and Sr mass 
fractions was seen in male thyroid of the first age group (Table 5). 
In age group 2 many correlations between trace elements in thyroid 
found in the age group 1 are no longer evident (Table 5). For example, 
all correlations between Zn and other trace elements existed in the age 
from 2 to 35 years disappeared but new correlation Zn-Cu was arisen. 
Thus, if we accept the levels and relationships of trace element mass 
fraction in thyroid glands of males in the age range 2 to 35 years as 
a norm, we have to conclude that after age 35 years the level of Zn 
and relationships of trace elements in thyroid significantly changed. 
If some positive correlations between the elements in the group 1 
were predictable (e.g., Fe-Cu), the interpretation of other observed 

relationships and their disturbance with age requires further study for 
a more complete understanding. No published data referring to inter-
correlations of Br, Cu, Fe, Rb, Sr, and Zn mass fractions in human 
thyroid and age-related changes of these inter-correlations was found.

An age-related increase and excess in metal mass fractions in 
thyroid tissue, including Zn, may contribute to harmful effects 
on the gland. There are good reasons for such speculations since 
many reviews and numerous papers raise the concern about toxicity 
and tumorigenesis of the metals.42‒76 Excessive thyroid Zn level in 
the older males may be harmful to normal metabolism of cells.77 
For example, Zn enhances the activity of telomerase,78 an enzyme 
thought to be responsible for unlimited cell proliferation.79 Excessive 
Zn intake has undesirable metabolic effects, such as immune 
dysfunction80 and impaired antioxidant defense.81 By now much data 
has been obtained related both to the direct and indirect action of Zn 
on the DNA polymeric organisation, replication and lesions, and to 
its vital role for cell division.82,83 Moreover, it is known that Zn is 
an inhibitor of the Ca-dependent apoptotic endonuclease, which takes 
part in the internucleosomal fragmentation of DNA. Its consequence 
is a depression of cell apoptosis.84 Some other ways for Zn to act as 
a potent anti-apoptotic agent have also been described.85‒88 All these 
facts imply that age-related excessive Zn concentrations in thyroid 
tissue are probably one of the factors influencing goiter, benign, and 
malignant tumor of the male thyroid.

All the deceased were citizens of Obninsk. Obninsk is the small 
nonindustrial city not far from Moscow in unpolluted area. None of 
those who died a sudden death had suffered from any systematic or 
chronic disorders before. The normal state of thyroid was confirmed 
by morphological study. Thus, our data for Br, Cu, Fe, Rb, Sr, and Zn 
mass fractions in intact thyroid may serve as indicative normal values 
for males of urban population of the Russian Central European region.

This study has several limitations. Firstly, it would be interesting 
in future studies to examine the Zn and other trace element levels 
using similar technique in autopsy specimens of females. Future 
studies should be also directed toward using other analytical methods 
which allow extend the list of chemical elements investigated in 
thyroid tissue.

Conclusion 

The 109Cd radionuclide-induced energy-dispersive X-ray 
fluorescence analysis is a useful analytical tool for the non-destructive 
determination of trace element content in the thyroid tissue samples. 
This method allows determine means for Br, Cu, Fe, Rb, Sr, and Zn 
(6 trace elements). Our data reveal that there is strongly pronounced 
tendency of increase in Zn mass fraction in the normal thyroid of male 
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during a lifespan. Therefore, a goitrogenic and tumorogenic effect of 
excessive Zn level in the thyroid of old males and of disturbance in 
intrathyroidal trace element relationships with increasing age may be 
assumed.
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