

Lifestyle in the elderly: exercise and dietary assets

Editorial

Physical exercise and nutritious dietary habit present the crucial factors determining well-being quality-of-life in the elderly and yet this aspect of the lifespan remains relatively undisclosed. The optimization of an individual's body composition to ensure an healthy aging period within the community offers a highly important and challenging pursuit for administrative organizations. Nutritional dietary habits consisting of healthy foods, the intake of copious amounts of fluid, primarily water, and the maintenance of an exercise habit present the basic ingredients for life sustenance, good health and well-being supported by informed dietary patterns and lifestyles based crucially upon not only retarding the progression of the process of ageing and reducing the risk of dementia but also optimizing quality-of-life factors.¹⁻³

Obesity/overweight/insulin resistance and their accompanying and definitive behaviors, sedentary lifestyle and poor, yet unrestricted, diet are the harbingers of major public health concerns and economic consequences define the marked tragedies pertaining to the quality-of-life among an ageing population of incremental incidence^{4,5}. A variety of nutritional factors and the benefits of physical exercise have been demonstrated in studies involving several neurodegenerative conditions that accelerate the ageing process^{6,7} implying that these, largely non-invasive, life style preventative efforts, should be studied more diligently for rendering a dignified and well-being linked ageing context.⁸ Nevertheless, there has been latterly a profusion of agents that modulate the ageing process, for example, it has been indicated also that beneficial effects accruing from rapamycin treatment upon arterial function in old mice provide marked improvements that are associated with the reduced incidence oxidative stress, AMPK activation and age-induced elevations of the expression of proteins linked the control of the cell cycle parameters.⁹

In a large meta-analysis of putative protective factors for the disorder¹⁰ grade I evidence for four medical treatments (estrogen, statin, antihypertensive medications and non-steroidal anti-inflammatory drugs therapy) and four dietary interventions (Folate, vitamin E/C and coffee) was obtained.

Despite the presence of effective interventions for weight gain/weight loss, as required, to maintain efficacious body composition among older and older elder adults within the community that have been identified, the introduction of lasting, health-relevant alterations in advantageous body composition remains a mirage although the consensus is that multiple preventions/interventions offer more efficacy than singular attempts.¹¹ The prevalence and increase in age-linked cognitive impairment presents a global concern that will continue to emerge. The issues involving lifestyle-exercise-diet remain complex, even enigmatic: thus,¹² observed that long-lasting dietary fat intake, body weight index, and waist circumference measurement produced a remarkable inverse relationship with cognitive functioning during later life episodes among individuals showing impaired glucose tolerance, although the observed decreases in body weight index and waist measurement before cognitive assessment related to deteriorated cognitive performances, a finding the authors related to reverse causality. Propensities towards physical exercise

Volume | Issue | - 2017

Trevor Archer

Department of Psychology, University of Gothenburg, Sweden

Correspondence: Trevor Archer, Department of Psychology, University of Gothenburg, Gothenburg, Sweden,
 Email trevor.archer@psy.gu.se

Received: September 26, 2016 | **Published:** January 20, 2017

and cognition-stimulating adherences together with the perchance for a Mediterranean style dietary style promote several expressions of 'brain health', not least from a neurophysiologic perspective, the outcomes of these modifiable lifestyle behaviors upon the brain well-being are increasingly evident¹³ additionally, recent human trials emerge to demonstrate significant promise regarding the utility of these lifestyle habits for amelioration of cognitive deficits. Moreover, it is implied that these lifestyle behaviors, through a multitude of wide-ranging mechanisms, serve to increase the brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function over longer life spans.

The search for optimal exercise-dietary sufficiency that provide physiological and psychological resilience for the elderly under laboratory, clinical and applied conditions of health and well-being imply the 'tailoring' of exercise parameters (type, intensity, frequencies, duration, etc) to individuals' health status and biopsychological personal attributes, the selection of physical condition and fitness, dietary requirements that ought to be chosen in the context of exercise-oriented lifestyle and the relative advantages of seeking preventative measures over necessary interventions.^{14,15}

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest in publishing the article.

References

1. Armamento-Villareal R, Aguirre LE, Qualls C, et al. Effect of lifestyle intervention on the hormonal profile of frail, obese older men. *J Nutr Health Aging*. 2016;20(3):334–340.
2. Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for health span and resiliency with aging. *Exp Gerontol*. 2016;S0531-5565(16):30147–30154.
3. Mallidou A, Cartie M. Nutritional habits and cognitive performance of older adults. *Nurs Manag (Harrow)*. 2015;22(3):27–34.
4. McNaughton SA, Crawford D, Ball K, et al. Understanding determinants of nutrition, physical activity and quality of life among older: the well-being, eating and exercise for a long life (WELL) study. *Health Qual Life Outcomes*. 2012;10:109.

5. Milte CM, Thorpe MG, Crawford D, et al. Associations of diet quality with health-related quality of life in older Australian men and women. *Exp Gerontol.* 2015;64:8–16.
6. Archer T, Kostrzewska RM. Physical exercise alleviates health defects, symptoms, and biomarkers in schizophrenia spectrum disorder. *Neurotox Res.* 2015;28(3):268–280.
7. Varma VR, Hausdorff JM, Studenski SA, et al. Aging, the central nervous system, and mobility in older adults. *J Gerontol A Biol Sci Med Sci.* 2016;70(12):1526–1532.
8. Trevor A, Clara A, Danilo G. Neurohealth manifestations rendered by physical exercise and diet. *Diversity Equality Health Care.* 2016;13(3):257–260.
9. Lesniewski LA, Seals DR, Walker AE, et al. Dietary rapacine supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient sensing, cell-cycle, and senescence pathways. *Aging Cell doi.* 2016;16(1):17–26.
10. Xu W, Tan L, Wang HF, et al. Meta-analysis of modifiable risk factors for Alzheimer's disease. *J Neurol Neurosurg Psychiatry.* 2015;86(12):1299–1306.
11. Schultz TJ, Roupas P, Wiechula R, et al. Nutritional interventions for optimizing healthy body composition in older adults in the community: an umbrella review of systematic reviews. *JBI Database System Rev Implement Rep.* 2016;14(8):257–308.
12. Lehtisalo J, Lindström J, Ngandu T, et al. Association of long-term dietary fat intake, exercise, and weight with later cognitive function in the Finnish Diabetes Prevention Study. *J Nutr Health Aging.* 2016;20(2):146–154.
13. Jackson PA, Pialoux V, Corbett D, et al. Promoting brain health through exercise and diet in older adults: a physiological perspective. *J Physiol.* 2016;594(16):4485–4498.
14. Archer T, Garcia D. Exercise influences upon stress-resilience and resilient health. *KJNPSM.* 2016;1:100–101.
15. Archer T, Kostrzewska RM. Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings. *Curr Top Behav Neurosci.* 2016;29:333–351.