

Research Article

Oil and pectin extraction from citrus paradise (grape) peels: A case of response surface optimization

Abstract

This work reflects the extraction process of oil and pectin from grape peels using a response surface method in which a central composite rotatable design of 2×5 and 3×5 was used for the two extractions. Output temperatures ($80-100^{\circ}\text{C}$) and heating times (5-9 hours) were used for oil extraction, while ($80-100^{\circ}\text{C}$) and heating times (20-60 minutes) and a pH of extract (1.0-3.0) were selected for pectin removal. Oil yield ranged from 7.90-15.30%, while pectin yield ranged from 19.90-35.70%. A maximum oil yield of 15.30% was obtained at a temperature of 90°C at a heating time of 9.0 hours, while a maximum yield of pectin of 35.70% was obtained at a pH of 2.5, 95°C temperature and 50 minutes heating time. The optimum value for oil production was 15.63% at an average temperature of 99.64°C and heating time of 8.99 hours, while the average value of pectin yield was 38.01% at an output temperature of 94.00°C , the period release time of 58.00 minutes with a pH of 2.00. The deviation between the experimental and predicted values was low and not significant. All processing conditions have important impacts on the extraction of oil and pectin from grape peels.

Keywords: oil, pectin, drying temperature, reaction time, response surface methodology

Volume 9 Issue 2 - 2021

Ololade Moses Olatunji, Kingsley Charles Umani, Jemimah Timothy Ekanem, Horsfall Ibiba Taiwo, 3.4 Samuel Kingsley Okon I

¹Department of Agricultural Engineering, Akwa Ibom State University, Nigeria

²Department of Agricultural Economics and Extension, Akwa Ibom State University, Nigeria

³Department of Agricultural & Bioresources Engineering, Michael Okpara University of Agriculture, Nigeria

⁴Department of Data Analytics, Ibibath Multi Services, Nigeria

Correspondence: Ololade Moses Olatunji, Department of Agricultural Engineering, Akwa Ibom State University, Nigeria, Email ololade moses (@yahoo.com

Received: October 08, 2020 | Published: March 31, 2021

Introduction

The importance of grape plant including its fruit, stem, leave, peel and roots to man in terms of health and economy cannot be overemphasized. Virtually, all parts grape produce is useful to man as well as the ecosystem. The fruits are used for food/wines and medicine, while the stems, leaves and roots are of medicinal values. A study revealed that grape peel inhibits activities of fungal and bacterial infections. Some other studies have revealed that grape peel has the ability to reverse a cancerous system.²⁻⁶ Grapefruits are mainly utilized by juice processing industries while the peels are generally wasted in these industries. Grape peels have higher nutritional values than the flesh itself. However, grapefruits especially the grapes (Citrus paradise) is one of if not the most commonly grown tree fruit in the world.⁷ Additionally, grapes have commercial value and they are produced mainly for fresh consumption, but they are also addressed to the food industry mainly for the production of fruit juice. Among the grape by-products, essential oils have been produced for more than a thousand years. 1 Essential oils extracted from grape peels are very complex matrices containing numerous- compounds of different chemical classes. These compounds are generally divided into two parts: the volatile part, which is the most representative and ranges between 85 and 99% in the different cold-pressed citrus oils, and the non-volatile part, containing fatty acids, sterols, carotenoids, waxes, coumarins, and polymethoxylated flavonoids (2 – 6% of the oil), which ranges between 1 and 15%.8 The quality and quantity of grape peel essential oils depend on many factors, such as the nature of the fruit itself, provenance, genotype, soil type, climate and the extraction process. Although, Zy et al.9 have shown that the by-products from grape juice processing represent a serious problem for the industry, given their limited applications and low added value. Grape peel is a primary by-product from extraction and if not re-used, becomes waste and a possible source of environmental pollution. The food

processing industry is among the areas that generate large amounts of waste with possibilities for use. ¹⁰ On the other hand, pectin is produced commercially in the form of white to light brown powder mainly extracted from grapefruits. It is a group of polysaccharides that are rich in galacturonic acids. ¹¹ Studies have shown that suitable methods were utilized to convert orange peel into value-added products such as essential oil and pectin. Pectin is a methylated ester of polygalacturonic acid¹² extracted from citrus peels and apple pomace under mildly acidic conditions. In the food industry, pectin has been widely applied as a thickening, gelling, and emulsifying agent for jams, soft drinks, fish and meat products, fruit juice, desserts and dairy products. ^{13,14} It is useful in medicinal applications, in which it helps in lowering serum cholesterol level, removing heavy metal ions from the body, stabilizing blood pressure and restoring intestinal functions¹⁵ and weight reduction.

Generally, the peels and pomace of fruits are disposed as industrial wastes or being used for animal feeding, yet they have been reported to be a potential source of pectin. ^{16–19} Therefore, the present study seeks to investigate the effects of processing conditions of pectin and oil expressions from grape peels by optimizing the pectin and oil yield and process parameters using response surface methodology (RSM).

Materials and methods

Sample preparation

Fresh grapes were purchased from a local market at Ukam, Mkpat Enin, Akwa Ibom State (see Figure 1a). They were skinned and the outer cover was removed, which was then cut into smaller pieces. It was divided into two parts and pre-heated for 1-2 hours (Figure 1b). The dried outer cover obtained was ground (Figure 1c) to provide a consistent and attractive particle (this was important to prevent clumping during solvent extraction) and stored at room temperature for further use.

Figure I Grapefruit (left); dried peels (center), ground peels (right).

Experimental design for oil and pectin extraction

The experimental design adopted for oil extraction were 2 factors, 5 levels, and for pectin were 3 factors, 5 levels, factorial Central

$$n = 2^{k} (n_{f}) + 2k(n_{a}) + k(n_{c})$$

where 'k' is the number of independent variables and n is the number of repetitions of experiments at the center point. Additionally,

$$N = 2^k + 2k + n_0$$

Therefore, the CCRD for oil extraction involved 13 experiments of 2^2 factorial Central Composite Design (CCD), with 4 axial points (α is 2) and 5 replications at the center points and the CCRD for pectin extraction involved 20 experiments consisting of 23 factorial CCD, with 6 axial points (α is 2) and 6 replications at the center points. For each independent variable, the levels were chosen with respect to preliminary experiments and previous reports literatures. For oil extraction from the grape peel, five drying temperatures (80, 85,

Table I Showing the levels, codes and actual values of independent variables

Composite Rotatable Design (CCRD) from Response Surface Methodology²⁰ respectively. According to the CCRD method, the total number of treatment combinations is:

[1]

the total number of design points^{21–24} is given as:

[2]

90, 95 and 100°C) and heating times of (5, 6, 7, 8 and 9 hours) were selected (Table 1). Also, for pectin extraction 5 pH levels (1.0, 1.5, 2.0, 2.5 and 3.0), temperatures (80, 85, 90, 95, and 100°C) and extraction times of (20, 30, 40, 50, and 60 minutes) were chosen (Table 1). The coded values of the independent variables (-2, -1, 0, 1, 2) were used; where -2, 0 and 2 represent the lowest, medium and highest levels respectively, as shown in Table 1.

Factors	Unit	Code	Lev	el				- Interval
Factors	Onit	Code	-2	-1	0	1	2	interval
Oil extraction								
Drying temperature	°C	X,	80	85	90	95	100	5
Heating time	hr	X_{2}	5	6	7	8	9	1
Pectin extraction								
pН		X,	1	1.5	2	2.5	3	0.5
Extraction temperature	°C	X_2	80	85	90	95	100	5
Extraction time	min	X ₃	20	30	40	50	60	10

The dependent variables are the parameters affecting the process of oil and pectin yield. ^{22,25,26} The empirical expression is represented in Equation (3) as:

$$Y = \beta_0 + \sum_{i=1}^{2} \beta_i X_i + \sum_{i=1}^{2} \beta_{ii} X^2_i + \sum_{i=1}^{2} \sum_{i=i+1}^{2} \beta_{ii} X_i X_i$$
 [3]

where **Y** is the response; β_0 is a constant term; $\sum_{i=1}^{2} \beta_i$ is the summation of the coefficient of linear terms;

 $\sum_{i=1}^{2} \beta_{ii}$ is summation of quadratic terms; $\sum_{i=1}^{2} \sum_{j=i+1}^{2} \beta_{ij}$ is the summation of the coefficient of interaction terms; $X_i X_j$ are independent variables.

Extraction of oil from grape peels using Soxhlet method

A round bottom flask was washed thoroughly, oven-dried and cooled in a desiccator. Then, 5 g dry mass of the puree was measured and labelled as S₁. The weighted sample was muffled in the filter, tied

using a thread and placed in the Soxhlet extractor. Again, n-hexane was added until it siphoned once and more hexane was added until the volume of the extractor was half full. It was ensured that the joints of the condenser were tight and the cooling water was circulating. On extraction of puree, the temperature of heating mantle was

set at 85°C and kept to boil in the round bottom flask for a period of 6 hours (see Figure 2). This experimental method has been employed by other researchers. See detail of oil extraction procedure in the works of Fakayode et al.²². However, the percentage yield of oil was calculated using Equation (4) as:

$$Y_{oil} = (W_2 - W_1) \times \frac{100}{s}$$
 [4]

where $Y_{\sigma il}$ is oil yield from grape peels (%), W_1 is the weight of empty flask (g), W_2 is the weight of flask and extracted oil (g), S is the weight of sample (g).

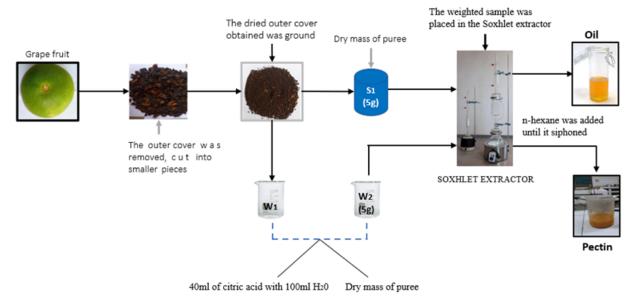


Figure 2 Flow diagram describing the oil and pectin extraction from grape fruit.

Pectin extraction from grape peels

A beaker was washed, oven-dried and weighed as W_1 . Then, $40 \, ml$ volume of 90% citric acid was diluted with $100 \, ml$ distilled water in a beaker at a pH of 2.0. A dry mass of $5 \, g$ of the puree was introduced into the beaker and the weight was recorded as W_2 . This procedure of extraction has also been used in past works for different agro-product. See details in the report of Fakayode et al.²².

Finally, the precipitate was dried at 55°C in an oven and the weight

$$Y_{pec} = 100 \times \frac{p}{B_i}$$

where, Y_{pec} is the extracted pectin yield (%), P is the amount of dry pectin (g), B_i is initial amount of grape peel (g).

Statistical analysis

In the present study, design expert version 11 from stat ease was employed to design the experimental procedure for oil and pectin extraction from grape peels using Response Surface Methodology (RSM). Linear two-factorial interaction (2FI), quadratic, and cubic models were developed in the cause of the analyses and these models were fitted to the experimental data. Also, analysis of variance (ANOVA) was utilized to determine the significance and fitness of the model as well as the effect of significant individual terms and their

interaction on the response variables. The p-value showed the level of significance for each regression coefficient which also indicated the interaction effect of each cross product. Data obtained from the experiments were statistically analyzed to determine the significant difference in the extraction process and their interactions at 5% probability level using Minitab 17.

was recorded. The experiment was done repeatedly using different volumes of citric acid ranging from 60, 70, 80, 90, 100 to 120 ml

with a constant volume of distilled water of 100 ml at varying pH

levels, extraction temperature, and extraction time respectively. Also,

different volumes of ethanol from 60, 70, 80, 90, 100, to 120 ml which

corresponds with the volume of citric acid were used to coagulate the

filtrate (see Figure 2). The percentage yield of pectin was based on the

gram of peel sample taken and was calculated using the expression

[5]

Results and discussion

Oil and pectin yields

in Equation (5) as:

The average summaries of the grape peel oil and pectin yields are presented in Tables 2 & 3 respectively.

Table 2 Oil yield from grape peel at various processing conditions

Runs	Drying temperature (°C)	Heating time (hr)	Oil yield (%)
I	85	6	9.3
2	100	7	11.1
3	85	8	7.9
4	95	8	15.3
5	90	7	10.7
6	90	7	10.9
7	90	9	10.3
8	90	5	9.1
9	90	7	10.8
10	90	7	11
П	90	7	9
12	80	7	10.2
13	95	6	10.3

Table 3 Pectin yield from grape peel at various processing conditions

Runs	pН	Extraction temperature (°C)	Extraction time (min.)	Pectin yield (%)
I	2	90	40	23.1
2	2	90	40	23.1
3	1.5	95	50	20.3
4	I	90	40	24.7
5	2.5	85	30	21.4
6	2	80	40	29.4
7	2	90	40	25
8	2	90	40	25.6
9	2	90	40	23.2
10	2.5	95	30	21.7
П	1.5	85	30	20.8
12	2	90	40	24.3
13	2	90	20	20
14	1.5	85	20,00	19.9
15	3	90	40	32.3
16	2.5	95	50	35.7
17	2.5	85	50	28
18	1.5	95	30	27.4
19	2	100	40	32.7
20	2	90	60	33.8

Effects of processing conditions on oil yield

The yield of oil from grape peels ranged from 7.90–15.30% (Table 2). It was observed from Table 2 that with an increase of extraction temperature the oil yield increases and it is maximum at 95°C. Furthermore, an increase in time with temperature increases the yield up to an extent and an increase in time has no effect at

lower temperatures as observed in Figure 2. As reported by Sharma et al.²⁷, in simple distillation methods, an increase of distillation time increases the oil yield and it is maximum at a certain point. Also, a further increase in time from 95°C has no effect on oil yield.

It was observed that as the extraction temperature and time increases, the in essential oil yield also increases. However, at higher

temperatures and heating times, beyond the optimum level, the oil yield decreases. This corroborates the findings of Giwa et al.²⁸ and Fakayode et al.²², who reported an increasing trend on oil extraction from orange peels using the water distillation method. Again, at low temperatures, steam travels through the grape peels slowly and the built-up pressure is not sufficient enough to extract the oil. Additionally, as the temperature increases for a very long period of time, the oil eventually breaks out of the peel matrix. Therefore, increasing the extraction time at higher temperatures will amount to substantial moisture loss leading to the hardening of peels which consequently leads to a reduction in the oil yield.

Effects of extraction process conditions on pectin yield

The pectin yield ranged from 19.9-35.70% (Table 3). The effects of these factors (pH, temperature, time) on pectin yield showed that the maximum yield from the grape peel sample was found to be 35.70% at pH of 2.5, the temperature of 95° C and time of 50 min (Table 3). Thus, a pH of 2.5 gives the optimum value for the extraction of pectin from the grape peels used. The optimum temperature for

pectin extraction was observed to be 95°C and this shows that higher temperature levels influence the yield of pectin. At high temperature, it is highly combustible indicating a greater effect on the yield because a reduction in temperature reduces the yield. Again, it was observed that at very low or moderate temperatures, the yield of pectin was greatly reduced.

At lower temperatures, the time of extraction has less effect on the yield of pectin, but at a higher temperature, the maximum level increases the yield of pectin and shows no form of thermal degradation on the extracted pectin. Kanmani et al.²⁹ reported that the maximum yield of pectin was obtained from moderate conditions (60 - 75°C). In Figure 3, it was observed that increase extraction time at low pH causes an increase in pectin yield. Similarly, very low pH indicates high level of acidity which increases the pectin extraction yields.³⁰ Although, as the extraction process proceeds, the pectin concentration in the solution increases as well. However, at increased time duration, the extraction rate gradually reduces because the low concentration gradient which makes the solution more viscous. This is in agreement with the observation of Coulson et al.³¹ and Maxwell et al.³²

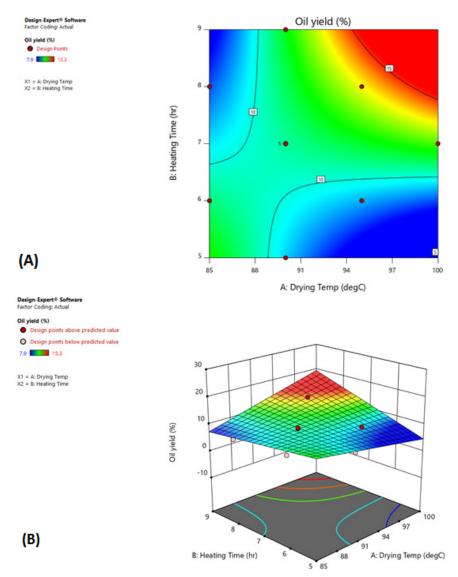


Figure 3 Response surface contour and 3D plot of the effect of drying temperature and heating time on oil yield.

At high extraction temperature and low pH, the pectin yield increases (see Figure 4). According to Putnik et al.³⁰, high acidity level causes an increase in pectin extraction yield. This is as a result fractionation of glycosidic bonds in the neutral sugars due to pH sensitivity which corroborates the findings of Pagan et al.³³ and Pagan et al.³⁴. From Figure 4, it was observed that an increase in extraction

time and temperature leads to an increase in pectin yield, were the optimum temperature and time are 95°C and 105 mins respectively. Again, this is in agreement with the findings of Pagan et al.³⁴, Fakayode et al.²² and Mollea et al.³⁵ on pectin extraction from peach pomace, cocoa husks, and citric wastes (Figures 5 & 6).

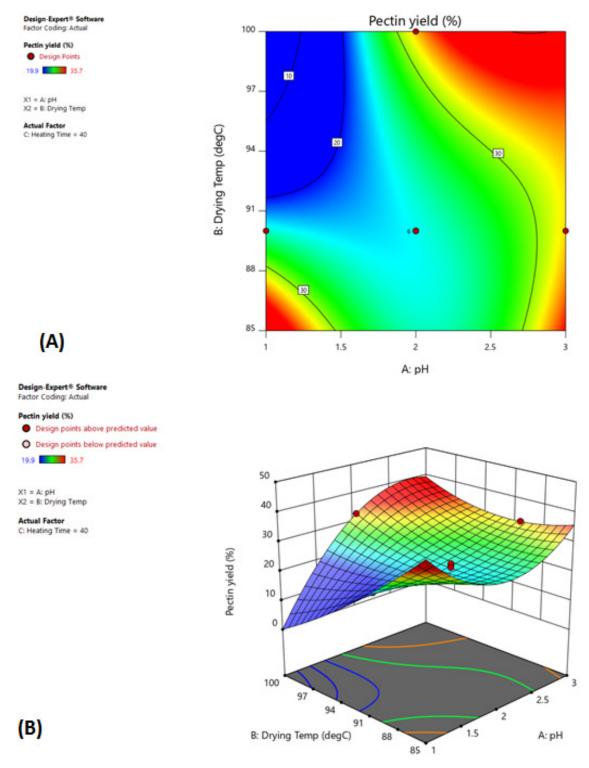


Figure 4 Response Surface Contour and 3D Plot of the Effect of pH and Extraction Temperature on Pectin Yield.

50

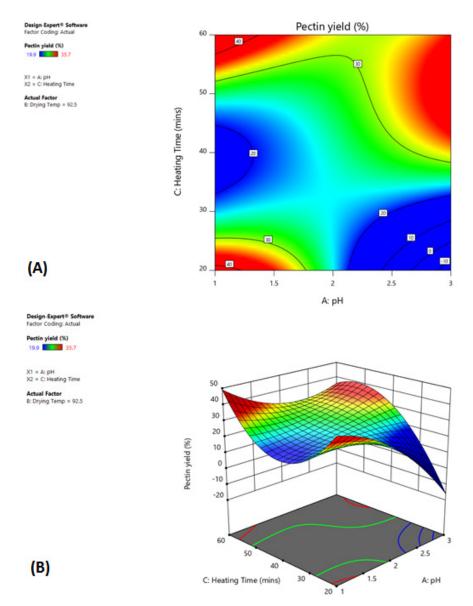
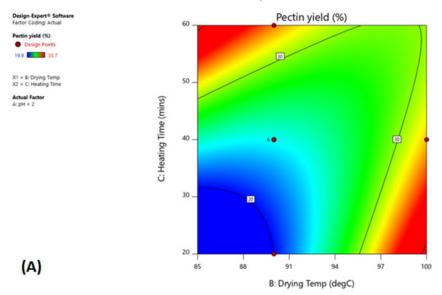



Figure 5 Response Surface Contour and 3D Plot of the Effect of Extraction Time and pH on Pectin Yield.

(4)

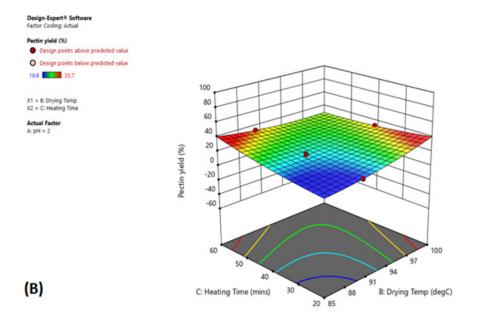


Figure 6 Response Surface Plot of the Effect of Extraction Time and Extraction Temperature on Pectin Yield.

Predictive models selection for the oil and pectin yield from grape peels

In the present study, different models were developed from the response surface analysis which include linear, two factorial interaction (2FI), quadratic, and cubic for the prediction of oil and pectin yield. These models were fitted to the experimental data using design expert. The appropriate model was selected based on the highest number of significant terms and the coefficient of correlation. Considering these, quadratic models were chosen for the oil and pectin yield (Tables 4 & 5). The final equations for the oil and pectin yields are given in Equations (3) and (4) respectively.

Table 4 Model comparison for oil yield (%)

Sources	Linear	2FI	Quadratic	Cubic
Std. Dev.	0.7431	0.7817	0.7966	0.759
R ²	0.7765	0.7774	0.8202	0.8834
Adjusted R ²	0.7318	0.7032	0.6919	0.7203
Predicted R ²	0.5012	0.2676	-0.3791	-11.2846
Press	12.33	18.1	34.08	303.56

Table 5 Model comparison for pectin yield (%)

Sources	Linear	2FI	Quadratic	Cubic
Std. Dev.	3.1	2.89	2.78	0.9988
\mathbb{R}^2	0.6642	0.7621	0.831	0.9891
Adjusted R ²	0.6012	0.6523	0.679	0.9585
Predicted R ²	0.4031	-0.1771	-0.4443	N/A
Press	272.74	537.87	659.96	N/A

$$Y_{oil} = -80.89 + 1.46DT + 4.80HT - 0.015DT \times HT - 0.007DT^2 - 0.18HT^2$$
(3)

$$+239.11 + 6.67$$
pH -4.99 ET -3.54 Et -0.028 pH \times ET $+0.042$ pH \times Et $+0.034$ ET \times Et $+2.90$ pH² $+0.026$ ET² $+0.009$ Et²

where Y_{oil} is oil yield from the grape peel (%), Y_{pec} is pectin yield from grape neels (%), DT is drying time (hr), HT is heating temperature (°C), pH is pH, ET is Extraction Temperature or drying temperature (°C), Et is the extraction time (min.) The ANOVA model for the selected for percentage oil and pectin yields from grape peels are presented in Tables 6 & 7 respectively. In equations 3 and 4, the positive terms signify a direct relationship between the oil and pectin extraction process conditions and their interactions with oil yield

(OY) and pectin yield (PY), while the negative terms signify an inverse relationship between them. It was observed that all the oil expression process conditions have a direct relationship with OY and PY. This implies that OY and PY exhibited an increase with an increase in the expression process conditions. Heating time was found to be the most significant parameter which affects OY. This agrees with the findings of Mollea et al.³⁵ on cocoa husks, Pagan et al.³⁴ on peach pomace, Fakayode et al.²² on orange peels, Kanmani et al.²⁹ and Khan et al.²⁶ on citrus peels.

Table 6 ANOVA for the effects of oil extraction conditions on oil yield (%)

Source	SS	DF	MS	F-value	p-value	Remark
Model	20.27	5	4.05	6.39	0.0153	Significant
A-Drying Temperature	8.17	I	8.17	12.87	0.0089	Significant
B-Heating Time	11.02	1	11.02	17.37	0.0042	Significant
AB	0.0225	I	0.0225	0.0355	0.856	Not Significant
A^2	0.6294	1	0.6294	0.9918	0.3525	Not Significant
B ²	0.7279	1	0.7279	1.15	0.3197	Not Significant
Residual	4.44	7	0.6345			
Lack of Fit	4.17	3	1.39	20.5	0.0068	Significant
Pure Error	0.2712	4	0.0678			
Cor Total	24.71	12				

Table 7 ANOVA for the effects of pectin extraction conditions on oil yield (%)

Source	SS	DF	MS	F-value	p-value	Remark
Model	379.73	9	42.19	5.46	0.0069	Significant
A-pH	90.46	I	90.46	11.72	0.0065	Significant
B-Extraction Temperature	57.72	1	57.72	7.48	0.021	Significant
C-Extraction Time	149.54	I	149.54	19.37	0.0013	Significant
AB	2.93	I	2.93	0.3793	0.5517	Not Significant
AC	0.3415	1	0.3415	0.0442	0.8376	Not Significant
ВС	22.64	I	22.64	2.93	0.1176	Not Significant
A ²	13.19	I	13.19	1.71	0.2204	Not Significant
B ²	10.2	1	10.2	1.32	0.2772	Not Significant
C²	20.55	1	20.55	2.66	0.1338	Not Significant
Residual	77.2	10	7.72			
Lack of Fit	72.22	5	14.44	14.48	0.0054	Significant
Pure Error	4.99	5	0.9977			
Cor Total	456.93	19				

For oil yield, the Model p-value of 0.0153 (Table 6) which is less than the chosen α - a level of 0.05 implies that the model is significant. The Lack of Fit p-value of 0.0068 implies the Lack of Fit is significant. The model terms p-values (Prob. > F) of 0.0089 and 0.0042 (Table 6) which are less than the chosen α -level of 0.05 indicate model terms are significant. In this case, A and B are significant model terms (Table 6). This implies that the drying time and the heating temperature have significant effects on oil yield (OY) with the heating temperature having the greatest influence on OY. Therefore, the two oil extraction conditions influenced the oil yield from grape peels. It was also found that the model was significant with a satisfactory coefficient of determination ($R^2 = 0.8202$). The high coefficient of determination showed excellent correlations between the independent variables. This value indicates that the response model (OY) can explain 82.02% of the total variability in the response.

For pectin yield, the model p-value of 0.0069 (Table 7) which is less than the chosen α -level of 0.05 implies that the model is

significant. The Lack of Fit p-value of 0.0054 implies the Lack of Fit is significant, insignificant Lack of Fit is good. The model terms p-values (Prob > F) are all less than the chosen α -level of 0.05 which implies that the model terms are significant. In this case, A, B, and C are all significant model terms (Table 7). This implies that the pH, extraction temperature and the extraction time have significant effects on pectin yield (PY) with the extraction time having the greatest influence on PY. Therefore, the three pectin extraction conditions influenced the pectin yield from grape peels. It was also found that the model was significant with a satisfactory coefficient of determination ($R^2 = 0.8310$). The high coefficient of determination showed excellent correlations between the independent variables. This value indicates that the response model (PY) can explain 83.10% of the total variability in the response.

Optimization and model validation

For the oil extraction, in the range of $80 - 100^{\circ}$ C for extraction temperature and 5 - 9 hours for a Heating time where the goal for

oil yield (OY) was maximum, the predicted oil yield of 15.63% at extraction temperature of 99.64°C and heating time of 8.99 hours was obtained with the desirability of 0.89. Under these optimal conditions, the experimental value was 15.47%. For the pectin extraction, in the range of 80-100°C for extraction temperature, 20-60 min for extraction time, and 1.0-3.0 for extraction pH where the goal for pectin yield was maximum, RSM predicted pectin yield of 38.01% at extraction temperature of 94.00°C, extraction time of 58.00

min, and extraction pH of 2.00 with the desirability of 1.00. This was experimentally validated as 37.84%. There was an excellent agreement between the actual and predicted values for the essential oil and pectin extractions (Figure 7). Deviations between experimental and predicted values were low and statistically insignificant for both extractions. This shows that the models chosen can adequately predict oil and pectin yields.

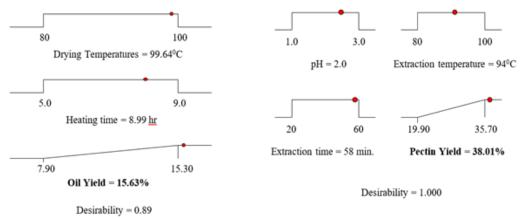


Figure 7 Ramp for optimization of oil and pectin yield.

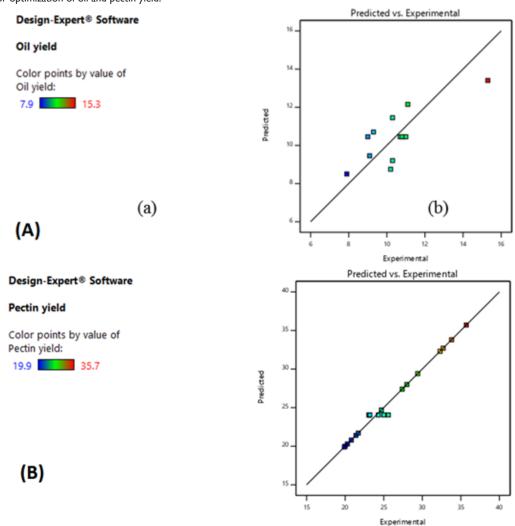


Figure 8 Comparison of the predicted and experimental values for (a) oil and (b) pectin yield.

Citation: Olatunji OM, Umani KC, Ekanem JT, et al. Oil and pectin extraction from citrus paradise (grape) peels: A case of response surface optimization. MOJ Food Process Technol. 2021;9(2):44–55. DOI: 10.15406/mojfpt.2021.09.00259

Conclusion

This study has facilitated a detailed investigation of oil and pectin from grape peels, products of the enormous value of foodindustry applications. Initially, the maximum yield of pectin was found to be 35.70% from grape peels at pH of 2.5, the temperature of 95°C and a time of 50 min. Temperature, pH, and extraction time played a significant role in the yield of pectin and the levels of these factors were optimized. The predicted optimum value was 38.01% pectin yield at a heating temperature of 94°C, the heating time of 58 mins and pH of 2 with the desirability of 1. Under these optimal conditions, the experimental value was 37.84%. The deviations between experimental and predicted values were low and statistically insignificant which implies that the various models selected could actually predict the pectin extraction from grape peels. For the grape peel oil, the maximum oil yield was found to be 15.30% at temperature 90°C and extraction time of 9 hours. The predicted optimum value was 15.63% oil yield at a heating temperature of 99.64°C and heating time of 8.99 hours with the desirability of 0.890. Under these optimal conditions, the experimental value was 15.47%. The deviations between experimental and predicted values were low and statistically insignificant which implies that the various models selected could actually predict the pectin extraction from grape peels. The environmental pollution that arises due to the disposal of grape peel can be overcome by using the same for grape peel oil and pectin extractions. Therefore, the disposal problem of the residue of grape peels after extracting the oil can be overcome by vermicomposting.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare that there is in no conflict of interest.

References

- Maria JV, Raúl AS, Enrique P, et al. Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control. 2013;31(1):1–14.
- Velazquez-Nuriez MJ, Avila-sosa R, Palou E, et al.. Antifungal activity
 of orange (Citrus sinensis, Valencia) peel essential oil applied by direct
 addition or vapor content. Food Control. 2013;31:1–4.
- Bajpai VK, Baek KH, Kang SC. Control of Salmonellain foods by using essential oils: A review. Food Resource International, 2012;45(2):722– 734
- Tunç S, Duman O. Preparation of active antimicrobial methyl cellulose/ carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Science and Technology. 2011;44:465–472.
- Burt S. Essential oils: Their antibacterial properties and potential applications in foods. A review. *International Journal of Food Microbiology*. 2004;94(3):223–253.
- Crescimanno FG, De Pasquale F, Germanà MA, et al. Annual variation of essential oils in the leaves of four lemon (C. limon L. Burm. f.) cultivars. Proceedings of the 6th Citrus Congress: Tel Aviv, Israel. 1998;583-588.
- Pandharipande S, Makode H. Separation of oil and pectin from orange peel, and study of effect of pH of extracting medium on the yield of pectin. *Journal of Engineering Research and Studies*. 2012;3(2):6–9.

- 8. Eristanna P, Vito AL, Germ MA. Current and Potential Use of Citrus Essential Oils. *Current Organic Chemistry*. 2013;17:3042–304.
- Zy Z, Liang L, Fan XYUZ, et al. The role of modified citrus pectin as an
 effective chelator of lead in children hospitalized with toxic lead levels.

 Altern Ther Health Med. 2008;14(4):34–38.
- Nogueira LAH, Lora EES, Trossero MA, et al. Dendroenergia: Fundamentos e aplicações. Rio de Janeiro: Interciência. 2000: 199.
- Benen JAE, Kester HCM, Parenicova L,et al. Kinetics and Mode of Action of Aspergillus niger Polygalacturonases. In: Pectins and Pectinases, et al. (Eds.). Elsevier, Amsterdam. 1996:221–230.
- Sriamornsak P. Chemistry of Pectin and Its Pharmaceutical Uses: A Review, 2003.
- 13. May CD. Industrial pectins: sources, production and applications. *Carbohydrate polymers*. 1990;12(1):79–99.
- Ralet MC, Bonnin E, Thibault JF. Pectins. In: Polysaccharides and Polyamides in the Food Industry, Steinbuchel A & SK Rhee (Eds.). Wiley-VCH, Weinheim. USA. 2005:351–386.
- Voragen AGJ, Pilnik W, Thibault JF, et al. "Pectins," In Food polysaccharides and their applications: Stephen, A.M., Ed. Marcel Dekker., New York. 1995:287-339.
- Kim WC, Lee DY, Lee CH, et al. Optimization of narirutin extraction during washing step of the pectin production from citrus peels. *Journal of Food Engineering*. 2004;63(2):191–197.
- Pedroza-Islas R, Aguilar-Esperanza E, Vernon-Carter EJ. Obtaining pectins from solid wastes derived from mango (Mangifera indica) processing. AIChE Symp Ser. 1994;300:36–41.
- Berardini NM, Schieber KA, Carle R. Utilization of mango peels as source of pectin and polyphenolics. *Innovative Food Sci. Emerging Technol.* 2005;6(4):442–452.
- Kliemann E, De Simas KN, Amante ER, et al. Optimization of pectin acid extraction from passion fruit peel (*Passiflora edulis flavicarpa*) using response surface methodology. *Int J Food Sci Technol*. 2009;44(3):476– 483.
- Box GPE, Hunter WG, Hunter JS. Statistics for Experiments. New York: Wiley. 1978:335–375.
- Fakayode OA, Ajav EA. Process optimization of mechanical oil expression from Moringa (Moringa oleifera) seeds. *Journal of Industrial* Crops and Products. 2016;90:142–151.
- Fakayode OA, Abobi KE. Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: a response surface approach. Journal of Analytical Science and Technology. 2018:9:20.
- Umani KC, Fakayode OA, Ituen EUU, et al. Development and testing of an automated contact plate unit for a cassava grater. *Computers and Electronics in Agriculture*. 2019;157:530–540.
- Ikrang EG, Umani KC. Optimization of process conditions for drying of catfish (Clarias gariepinus) using response surface methodology (RSM). Food Science and Human Wellness. 2019;8(1):46–52.
- Gama B, De Farias Silva CE, Oliveira Da Silva LM, et al. Extraction and characterization of pectin from citric waste. *Chemical Engineering Transactions*. 2015;44:259–264.
- Khan M, Bibi N, Zeb A. Optimization of process conditions for pectin extraction from citrus peel. Sci Tech Dev. 2015;34(1):9–15.
- Sharma N, Tripathi A. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. *Microbiology Resources*. 2008;163(3):337–344.
- 28. Giwa SO, Muhammad M, Giwa A. Utilizing orange peels for essential oil production. *J Eng App Sci.* 2018;13(1):17–27.

- 29. Kanmani P, Dhivya E, Aravind J, et al. Extraction and analysis of pectin from citrus peels: augmenting the yield from citrus limonusing statistical experimental design. *Iranica J Energy Env.* 2014;5(3):303–312.
- 30. Putnik P, Kovacevic DB, Jambrak AR, et al. Innovative "green" and novel strategies for the extraction of bioactive added value compounds from citrus wastes A review. *Molecules*. 2017;22(5):1–24.
- Coulson JM, Richardson JF. Chemical engineering, New York: Pergamon Press, USA. 1972;2:375.
- Maxwell EG, Belshaw NJ, Waldron KW, et al. Pectin an emerging new bioactive food polysaccharide. Trends Food Sci Tech. 2012;24(2):64–73.
- 33. Pagan J, Ibarz A. Extraction and rheological properties of pectin from fresh peach pomace. *J Food Eng.* 1999;39(2):193–201.
- Pagan J, Ibarz A, Llorca M. Pagan, A., Barbosa-Canovas, G. V. Extraction and characterization of pectin from stored peach pomace. Food Res Int. 2001;34(7):605–612.
- 35. Mollea C, Chiampo F, Conti R. Extraction and characterization of pectins from cocoa husks: a preliminary study. *Food Chemistry*. 2008;107(3):1353–1356.