Buffalo calf: an emerging meat source in India

Abstract

In India, male buffalo calves are considered as burden and left as such as stray animals. The meat from such animals if reared properly has great export potential. In India, buffalo meat is a major export commodity contributing to nation’s GDP to a great extent. The buffalo meat is considered as a by-product of dairy sector. Such meat obtained from spent buffalo is quite tough and is not of uniformed quality which sometimes affects the consumers' preference. Thus issue can be resolved by rearing male calves and utilizing their meat.

Keywords: buffalo calves, meat, slaughter rate, meat production, sausages

Introduction

In India, buffalo meat has gained importance in the recent years because of its domestic usage and export potential. India ranks first in buffalo with 105.34 million population contributing 58% of world’s buffalo population. Their slaughter rate is 10.6% with annual meat production of 1.64 million tons.1 Buffalo meat has registered a growth of 27% in export during the financial year 2012-13.2 The buffalo meat sector, therefore, is one of the important sectors in Indian economy and shares 31.1% of India’s total meat production.1 Buffalo meat comes from spent dairy buffalo after full utilization of their productive life. Such meat is a by-product and the average carcass yield varies from animal to animal. Spent buffalo meat is dark, coarse and tough in texture and has poor organoleptic and processing characteristics.3,4 This issue can be resolved by using meat of male animals of lower age (below 18 months) with more collagen solubility.3 As animals get older the collagen cross links become stabilized and the collagen is much less soluble.5 This will solve the dairy farmers’ problem of raising male buffalo calves. Raising and utilizing such calves for meat production would further potentiate the employment and income generation. Moreover, increased availability of quality meat may help in overcoming the problem of malnutrition in the country and enhance the export potential of this commodity.

Further, it has been observed that in India every year about 10 millions of male buffalo calves are removed or killed from the production system by farmers due to their intentional negligence in the management practices with a view to save on mother’s milk and feed resources incurring loss of about US$ 11 million per annum in the country.6 These calves could be salvaged for meat production, which will not only improve the economic condition of the farmers but also would increase meat production for domestic consumption and export market. Such conditions have necessitated the development of technology which would not only aid in stimulating the taste buds of consumers towards calf meat but also result in healthier, nutritious and value added finished products. This will provide better return to farmers which in turn would improve the managerial practices and lower the calf mortality rate, which may give the country a much needed quantum jump in the meat production sector.

Buffalo male calf meat

The good quality meat from male buffalo calves is available after about 10-12 months of restricted sucking period.7,8 The dressing percentage of buffalo carcass of 130 to 500 kg bodyweight has been found to range between 50 and 55%.9,10 Meat of properly fed buffalo calves, having no religious taboo, is lean and tender in quality and is relished by most of the sections of population. Buffalo calf meat is brighter than beef but the amount of meat pigments do not differ significantly. Although, buffalo muscles are slightly tougher than corresponding beef muscles due to greater contribution of connective tissue components to toughness of meat, yet emulsified products like sausages, patties, loaf and nuggets etc. can be very well prepared from buffalo meat.11 The physico-chemical and processing properties of buffalo calf meat are briefly described below:

Physico-chemical characteristics of buffalo male calf meat

pH and moisture: The meat obtained from male buffalo calves is reported to be more suitable for preservation by freezing, when evaluated on basis of pH and thawing loss.12 The pH of the meat from young male buffaloes has been found to lie in the range of 5.54-5.57.13,14 The pH is highly related to other meat processing parameters like water holding capacity and emulsifying capacity, whereas, the moisture present in meat determines the binding ability of the meat to some of the binders and fillers added during processing of meat products. It has high correlation with the fat content of the meat. It is also related with the shelf stability of the processed products since it has relationship with the water activity of the meat for the microbial growth. Moisture content of the meat has direct relationship with juiciness of the processed meat products, which is one of the important sensory attributes.15 The meat from intensively reared young male buffaloes showed a significantly (P≤0.05) higher moisture content than the meat from spent male and female buffaloes.16 The moisture content of buffalo meat decreases as the age of the animal increases which is probably associated with an increase in fat content.16

Tenderness: The meat obtained from young male calves is tenderer than that from higher age. Connective tissue in the buffalo meat had a bigger contribution to toughness.17 Chronological age was
Buffalo calf: an emerging meat source in India

significantly related to the collagen content in the muscle. The collagen content increased significantly with advancing age of the male Murrah buffaloes. A hydroxyproline content of 0.12% was recorded in high protein diet fed young male buffaloes. The muscles from young buffaloes of 1 to 2 years showed less collagen (0.91 to 1.71g/100g) than from 12-year-old buffaloes (1.16 to 2.23g/100g). As animals get older the collagen cross links are stabilized. After cooking, the collagen cross links weaken but do not break, so contributing to the toughness of meat from old animals.

**Shear press value:** It provides basic information on tenderness, WHC and texture of the meat. Shear press value was reported to have positive and higher correlation with fibre diameter, hydroxyproline content and toughness of the meat and negatively correlated with the sarcomere length of the meat. The buffalo meat obtained from young males showed a significantly (P≤0.05) lower shear press value than the other groups. Intensive feeding decreased the press force value of the meat.

**Processing characteristics**

**Water holding capacity:** Among the functional parameters, the inherent ability of the meat to hold its own water and its ability to bind with water added to it separately or as a constituent present in non meat additives in a product formulation is the most important factor in deciding suitability of the meat for processing into products. It is directly related to emulsion stability and juiciness of the meat products. A water holding capacity of 20.61ml/100g was recorded in meat obtained from young male buffaloes fed with high protein diet. Meat from intensively reared young male buffaloes had significantly (P≤0.05) higher water holding capacity than the meat from spent female buffaloes.

**Emulsifying capacity:** The amount of myofibrillar proteins present in meat and their ability to emulsify added fat is an important criterion for emulsion stability and better product characteristics in terms of binding and texture. The emulsifying capacity of the meat from young male buffaloes was significantly (P≤0.01) lower than spent male buffaloes but not spent female buffaloes.

**Conclusion**

The buffalo calf meat palatability is almost similar to buffalo meat. Further, the processing characteristics of buffalo calf meat are superior to that of spent buffalo in terms of tenderness. Thus on one side the buffalo calf meat will combat the issue of nutritional security and on other side will enhance the export potential of the country. The rearing of these calves will further reduce the farmers’ burden and will improve the socio-economic status of the farmers.

**Acknowledgements**

The first authors sincerely express gratitude to the Department of Science and Technology, New Delhi, India for the award of Inspire fellowship to pursue Ph.D. Programme.

**Conflict of interest**

The author declares no conflict of interest.

**References**


2. APEDA. *Agriculture and processed food export development agency*. APEDA agri exchange; 2012.


