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Introduction
Particles with different aerodynamic diameters found in the air are 

a priority pollutant due to their effects on human health.1 A significant 
part of atmospheric particulate matter are bioaerosols,2–4 which consist 
of particles of biological origin, including bacteria, fungi, archaea, 
viruses, pollen, their fragments, components, and by-products, such as 
DNA, endotoxins, and mycotoxins. Monitoring bioaerosols is crucial 
for the assessment of air quality, particularly about public health, 
environmental ecology, and aspects related to atmospheric chemistry. 
Because bioaerosol concentrations in typical indoor and outdoor 
environments are relatively low or experience strong temporal 
fluctuations, there is no bioaerosol sampler that allows the use of a 
single analytical tool to determine the specific characteristics of the 
microorganisms present in them, so there is a strong interdependence 
between the bioaerosol sampling technique and the tools for studying 
the microbiome present.5,6

Most aerosol sampling devices separate particles from the air 
stream and collect them in a preselected medium. Gravity-based 
samplers, impactors, filters, impingers, and cyclones are common 
sampling techniques used to separate and collect bioaerosols. 
Electrostatic devices and the lab-on-a-chip platform based on 
microfluidic technology are also used.7–12

Polyurethane foam (PUF) cartridges and disks are widely used 
for active and passive sampling of bioaerosols and volatile and semi-
volatile organic compounds. In particular, PUFs have been widely used 
in high-volume active air samplers due to their high retention capacity 
for organic contaminants. A typical sampling approach involves 
a pump drawing a known volume of air through a filter to collect 
particulate-bound compounds. To capture the total concentration of 
airborne contaminants, a sorbent is added downstream of the filter, 
and a common extraction and chemical analysis for the filter and 
sorbent can be applied.13–16 In this way, they can be analyzed with 
organic contaminants and microorganisms present in the air.17,18

Although the methods that use active sampling with filters and 
PUF for the determination of organic contaminants indicate that it 
is possible to reuse polyurethane cartridges, this is not indicated for 

the case where they are used to determine the biological material 
present in aerosols. It is therefore novel to evaluate the possibility 
of reusing polyurethane materials for the microbiological analysis 
of bioaerosols. Taking this into account, the objective of this work 
is to evaluate the possibility of reusing PUF cartridges in case it is 
necessary for logistical reasons to do so.

Materials and methods
In this work, the USEPA TO-13 A method was considered for 

the analysis of bioaerosols, widely used and taken as a reference 
for many analyses of atmospheric particulate matter in indoor and 
outdoor environments.19–22 A comparison of the polyurethane foam 
(PUF) was made to determine whether the cleaning treatment and 
sample extraction, as indicated by the TO-13a EPA method, affect the 
recovery of microorganisms (m.o.). The comparison was made with 
an untreated PUF (PUFb), a treated PUF (PUFt) after the cleaning 
procedure of the method, and a reused PUF (PUFr) which means 
that it was employed after the cleaning, sampling, and extraction 
procedure but without another cleaning. With this in mind, the 
following methodology is proposed:

Initially, PUFb, PUFt, and PUFr were sterilized using moist heat 
in an autoclave. A fourth PUF was added, designated as new (PUFn) 
which will be used as a control for microbial growth., as it underwent 
neither cleaning treatment nor sterilization and was simply taken 
from the package. A fragment was cut (inoculum) corresponding to 
one-fourth of each PUF’s diameter and approximately one centimeter 
thick (Figure 1). This entire process was conducted under aseptic 
conditions.

Subsequently, the inoculum was placed on a sterile Petri dish with 
sterile commercial isotonic saline solution 0.9% (ISS), widely used 
for growth studies,23 and was gently mixed. This involved placing 
the Petri dish on a table and rotating by hand it five times clockwise, 
five times counterclockwise, five times forward and backward, and 
five times horizontally. After the mixture procedure, a portion of the 
resulting ISS was then taken for cultivation on a culture medium 
under aseptic conditions.
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Abstract

Bioaerosols are a fundamental component of particulate matter present in the air, and 
numerous sampling and detection techniques have been developed to study them. While 
the simultaneous determination of organics and microorganisms in particulate matter 
could offer advantages, this approach has not been well explored. Some techniques for 
analyzing organic compounds in particulate matter involving using a polyurethane foam 
(PUF) cartridge or disk which, depending on the analytic procedure, may need to be cleaned 
with chemicals that could compromise the growth or recovery of microorganisms if used 
for this purpose. This study aims to determine whether chemical pretreatment of PUF 
affect negatively the results of the sampling. Additionally, the potential for microorganism 
growth on previously used PUF was evaluated. After sterilization, the results demonstrated 
that microorganism growth is possible on both chemically treated and reused PUF. These 
findings suggest that reusing PUF could reduce costs and waste after sampling.
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Figure 1 Fragment of the four PUFs used for the sterility test. The PUFs were 
new (PUFn), untreated (PUFb), treated (PUFt), and reused (PUFr).

Two culture media were used to compare the ISS obtained from 
PUFn, PUFb, PUFt, and PUFr. The first medium, LB (Luria-Bertani), 
is easy to use and versatile, allowing for the growth of a wide variety 
of bacteria.24 The second medium, BHI (Brain Heart Infusion), 
is a popular enriched medium ideal for the growth of fastidious 
bacteria.25,26 Both media can support the growth of a broad range of 
microorganisms, making them useful for obtaining a representative 
sample of the microbiota present in a given sample.

For the sterility test of the PUF, an inoculum was taken with a 
bacteriological loop from the SSI in the Petri dish corresponding to 
each PUF. It was then streaked using the radial quadrant technique on 
plates containing the different culture media (Figure 2). Two negative 
sterility controls were used: a sample of non-sterilized common paper 
and the non-sterilized PUFn. As a positive sterility control, a streak 
was made on the medium with a previously sterilized bacteriological 
loop using sterile water. The plates were incubated for 24 hours 
at 37°C. After this procedure, each plate was analyzed by visual 
inspection.

Figure 2 A: LB, and B: BHI agar where the samples; PUFn, PUFb, PUFt, PUFr. 
The control sample, sterile water, and sterile loop, of interest were inoculated 
to verify the sterilization process.

After conducting the sterility test, the comparison between the 
PUFs continued to determine whether the treatment conditions of 
each PUF affected the recovery of microorganisms. For this, all four 
PUFs were exposed to the laboratory environment on a workbench 
for 24 hours. After this period, the corresponding tests were carried 
out following the previously described process. Two positive controls 
for microbial growth were used: a sample of non-sterilized common 
paper and tap water, where microbial growth is expected, and two 
negative controls: sterile water and a fragment of sterile PUFn, where 
microbial growth is not expected, incubating time and temperature 
were the same. Results were also analyzed by visual inspection.

Results and discussion
The sterility test demonstrated that the PUFs were not contaminated 

and did not contain any microorganisms, as shown in Figure 3. Both 
plates displayed the same result, showing microbial growth in the 
control sample and PUFn, which were not sterilized. No growth was 

observed in the other quadrants: PUFb, PUFt, and PUFr, which were 
sterilized, as well as in the sterile water inoculation and the streak 
made with the sterile bacteriological loop, which also showed no 
microbial growth. This indicates that the sterilization of the PUFs was 
effective.

Figure 3 A: LB, B: BHI agar, where it can be observed that there was no 
microbial growth in PUFb, PUFt, and PUFr, but growth was observed in PUFn 
and the control sample.

This study determines whether PUFs are affected in their ability 
to recover microorganisms present in the environment after applying 
the cleaning and/or sampling procedures as indicated by the TO-13A 
method, with the aim of demonstrating whether PUFs can be reused. 
For this test, PUFt and PUFr were used to assess microorganism 
recovery, along with controls, PUFn and PUFb. This indicates 
that the cleaning treatment in the case of PUFt, and the extraction 
process in the case of PUFr, do not adversely affect the recovery of 
microorganisms from these PUFs (Figure 4).

Figure 4 The LB agar plate shows microbial growth for PUFn, PUFb, PUFt, and 
PUFr, as well as for the positive controls, and no microbial growth is observed 
in the negative controls.

Conclusion
The results demonstrate that the PUF can be reused after sample 

extraction, as the treatment and process applied to the PUF do not 
affect the recovery of microorganisms from the environment. 
However, a sterilization process is required before performing any 
test with them. Therefore, it is concluded that the PUF can be reused 
without compromising the results, as shown in Figure 4, and could 
help to minimize cost and waste after sampling.
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