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Introduction 

Microseismic data monitoring is actively developing area of 
research with its own successes and problems.1,2 Important parameter 
that may be derived from microseismic events is stimulated reservoir 
volume (SRV).3–7 This parameter is widely used for analysis of 
well performance and stimulation effectiveness in unconventional 
reservoirs. Stability of SRV estimation and accuracy of machine 
learning SRV forecast are directly related to the structure of a set of 
microseismic events and to parameters derived via events structure 
analysis. In this paper stable SRV estimation and enhancement of SRV 
forecast accuracy is achieved via time related segmentation of a set 
of microseismic events and using feature engineering,8,9 followed by 
machine learning forecast. In this paper we use three machine learning 
methods combined with feature engineering and stochastic simulation 
of perturbated predictor variables. These methods are widely used 
in research devoted to environmental science, earth science, and 
petroleum engineering [17-25]. A new version of feature engineering, 
named multilevel feature engineering is introduced and used for 
construction of predictor variables. Randomized Monte Carlo cross 
validation10 is used in this paper as the tool for analysis of associations 
between SRV and constructed predictor variables and analysis of ML 
forecasts accuracy. Predictor variables used in ML forecasts were 
built using microseismic data available in the 3D HFTS dataset named 
“SUGG-A-171 5SM”. This dataset is available at EDX website 
(https://edx.netl.doe.gov/). Also, see the work of11 on alternative 
machine learning based approach to predict SRV. More details on 
machine learning techniques used can be found at Aminzadeh, et al,.12 

Also see Aminzadeh,13 and Aminzadeh14 on reservoir characterization 
and hydraulic fracturing.

Time-windowed segmentation of microseismic data

Time-windowed segmentation of microseismic data that can also 
be referred to as 4D Microseismic data is the first step in used in this 
paper procedure of SRV analysis and SRV forecast. To perform time-
related segmentation the microseismic data are presented as a set of 
records of the following form:

( ) ( ) ( ) ( ) ( ) ( )( ):  , , , ,  Record k time k East k North k Depth k magnitude k   (1)

In Eq. 1 k is index of the record, 1 k kmax≤ ≤ ; East, North, and 
Depth are spatial coordinates of the event, magnitude is the recorded 
magnitude of microseismic events. Each segment contains a 3D 
subset of records with indexes k(p) defined by Eqs. 2 and 3.

( ) ( ) ( )* 1 * 1segmShift p k p segmShift p Nrec− < ≤ − +
         

(2) 

( )1 k p Nrec≤ ≤
                                                                          

(3) 

Where Nrec is the number of records in each individual segment, 
p is index of the segment, segmShift is the time shift between two 
neighboring segments. To get most stable results, parameter Nrec   is 
selected to be much larger compared to segmShift, so that neighbor 
segments strongly overlap. Results presented in this paper are obtained 
using parameters segmShift and Nrec defined by Eq. 4.

2;   40SegmShift Nrec= =                                                                   (4) 
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Abstract

New methodology of stable, high accuracy estimation and optimization of stimulated 
reservoir volume (SRV) forecast is presented in this paper. It includes time-related data 
segmentation, new multilevel feature engineering, analysis of associations and importance 
of engineered variables. Among first-level feature engineered variables are three quantile-
type variables qRangeDepth, qRangeNorth, and qRangeEast. hese three quantile-type 
variables are used for SRV  estimation. In addition to quantile-type variables, two first level 
variables -trange and event minute are constructed as the first -level variables. These two 
variables give compact characterization of distribution of microseismic events in time and 
are used as predictor variables in ML SRV forecast. Second and third level engineered 
variables are built via transformation of variables of the first level. Although in this paper 
we focus on the SRV forecast, the same ideas are applicable to the characterization and 
forecasting of the plume volume in carbon storage and monitoring applications.

A linear regression method and two ML methods - random forest, and regression tree are 
used for the SRV forecast. It is demonstrated that in the case of selection of appropriate set 
of first and second level predictor variables even simplistic linear regression may produce 
accurate SRV forecasts. Still, machine learning methods produce more accurate forecasts 
characterized by high values of accuracy parameters r.squared and correlation between SRV 
and its forecast values. Our results can have a significant impact on the proper design of 
a hydraulic fracturing operation. It can also be used for monitoring CO2 plume in carbon 
sequestration sites.

Keywords: hydraulic fracturing; stimulated reservoir volume (SRV) machine learning; 
forecast; feature engineering; segmentation; variable importance; stability; carbon 
sequestration
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Feature engineered variables of the first and level

Microseismic events in each segment are characterized by several 
parameters. Among them are index of the segment p, index of event 

k, time of event t(k), three spatial parameters North, East and Depth, 
and magnitude of event. These parameters are used for construction 
of new variables. Among them are three quantile ranges of spatial 
coordinates defined by Eqs. 5, 6, and 7.

( ) ( )( ) ( )( )( , 0.995 ( , 0.005yqRangeEast p quantile East k p qP quantile East k p qP= = − =                                                                         (5) 

( ) ( )( ) ( )( , 0.995 ( ( , 0.005)qRangeNorth p qantile Nofrth k p qP quantile North k p qP= = − =
                                                                     

(6) 

( ) ( )( ) ( )( , 0.995 ( ( , 0.005qRangeDepth p qantile Depth k p qP quantile Depthth k p qP= = − =
                                                                     

(7) 

Four segmented quantiles of time dependent magnitude of 
microseismic events are defined by Eqs. 8 to 11.

( ) ( )( )1 , , , 0.25qMagn p quantile Magnitude p k qP= =
          

(8) 

( ) ( )( )2 , , , 0.5qMagn p quantile Magnitude p k qP= =
            

(9) 

( ) ( )( )3 , , , 0.75qMagn p quantile Magnitude p k qP= =
         

(10)

( ) ( )( )4 , , , 0.99qMagn p quantile magnitude p k qP= =
        

(11) 

In Eqs. 5 to 11  qP  is quantile probability. Additional first-level 
variables named trange(p) and eventminute(p) are defined by Eqs. 12 
and 13.

( ) ( )( ) ( )( ),  , .trange k p max t k p min t k p= −
                           

(12)

( ) ( ), 60 * / ,eventminute k p Nrec trange k p=
                            

(13)

In Eqs. 12 and 13 t(k,p) is recorded time of microseismic event 
with index k in the segment with index p. Quantile probabilities in 
Eqs. 5, 6, and 7 are equal 0.995 and 0.005. Therefore, only a small 
number of microseismic events are treated as outliers located outside 
parallelepiped that defines SRV. Time value assigned to the segment 
with index p is defined as the first level feature engineered parameter 
defined by Eq. 14

( ) ( )( )(Time p mean time k p=                                                       (14)

Where time(k(p)) is the time of microseismic event with index k 
within the segment with index p. Plot of variable Time(p) is shown at 
Figure 1.

According to Figure 1 values of variable ( )Time p  monotonically 
increase with increase of segment index, although rate of such 
increase changes with change of segment index. This property of Time 
(p) variable allows to construct variables trange and eventminute that 
used in producing SRV forecasts.

Figure 1 Plot of variable Time (p) with time values assigned to 270 segments.

Variables constructed at the second level of feature 
engineering.

The following transformation methods are used in feature 
engineering of the second level variables.

Power-based transformation done according to Eq. 15

( ) ( ) p
variableT r abs variable=

                                                         
(15)

The Logarithmic transformation defined by Eq. 16.

( )variableT log variable=
                                                                   

(16)

Variables designed according to Eqs 16 and 17 are used as predictor 
variables in ML forecasts reviewed in this paper. Three additional 
variables of the second level are defined by Eqs. 17, 18, and 19.

 *qrEastNorth qRrangeEast qRangeNorth=                                 (17) 

 *qrDepthNorth qRangeDepth qRangeNorth=                            (18) 

 *qrDepthEast qRangeDepth qRangeEast=                                   (19) 

Power-based transformation of normalized variables is done 
according to Eq. 21.

( ) ( )( )/
p

variableT r abs variable mean variable=
                     

(20)

Specific form of second level engineered variable is defined as 
product of several features constructed at the first level. This type of 
variable is used for SRV calculation. SRV is defined as the volume of 
orthogonal 3D parallelepiped and is calculated according to Eq. 21.

( ) ( ) ( ) ( ) * *  SRV p qRangeEast p qRangeNorth p qRangeDepth p=
         

(21) 

Compact description of multilevel feature engineering procedure 
is presented at Figure 2.

Figure 2 Compact description of multilevel feature engineering.

Analysis of stability of SRV estimation

SRV is calculated in this paper as a function of three feature 
engineered variables of the first level. Generally, there is no relationship 
between stability of variables and stability of their function. The goal 
of this section is to illustrate methodology of analysis of relationships 
between stability of three variables that define SRV values and their 
function - SRV and to illustrate that relative stability of calculated 
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SRV is close to stability of SRV. It5 is necessary to note that the more 
complex problem of stability analysis of SRV forecast is not reviewed 
in this paper and will be analysed in future research.

Method of stochastic simulation of random noise15–18 is used in this 
paper to analyze stability of SRV estimation. The first step in estimation 
of SRV stability is random perturbation of values of quantile-type 
variables that characterize spatial distribution of microseismic events. 

Perturbed versions of three quantile-type variables are calculated 
according to Eqs 22, 23, and 24.

( ) ( ), , , ,RqRangeNorth p k n qRangeNorth noise p k n= +
      

(22)

( ) ( ), , , ,RqRangeEast p k n qRangeEast noise p k n= +
              

(23)

( ), ,  ( , , )RqRangeDepth p k n qRangeNorth noise p k n= +
       

(24)

Perturbed values of SRV are calculated according to Eq. 25.

( ) ( ) ( ) ( ), , , * , , * , ,rSVR p k n RqRangeNorth p kn RqRangeEast p k n RqRangrNorth p k n=
                                                                      

(25)

In Eqs 22-25 n is the index of the perturbation. It is the same in 
all four equations 22-24, whereas noise components are all different 
and generated independently from each other. All noise components 
in Eqs 22-24 are built as uniformly distributed random values with 
zero mathematical expectation and range of values defined by Eqs 
26 and 27.

DSRV noise DSRV− < <                                                                   (26)

Where 

( ) ( )( ) * 0.DSRV max SRV min SRV= −
                                         

(27)

Using parameter DSRV allows to define noise level as fracture of 
the width of SRV range. Stability of analyzed variables is characterized 
in this paper by the values of parameter named St. It is defined by Eq. 
28.

( ) ( ) ( ) ( )( )/St variable mean variable mean variable std variable= +
      

(28)

Where mean(variable) and std(variable) are estimates of mean and 
standard deviations of analyzed variables calculated using multiple 
perturbed versions of the same variable.

Forty perturbed SRV versions are shown in Figure 3. According 
to this figure all forty SRV perturbed versions are very close to each 
other. Therefore, SRV stability is high.

Figure 3 Plots of 40 perturbed SRV versions.

High stability of SRV estimates is confirmed by results presented 
in Table. Table 1 and Table 2 show values of association criterion 
as function of two versions of transformations – simplistic (not 
normalized and not scaled) and transformed according to Eq. 20. In 
Table 1 m is index of the version of parameter .Association  One can 
observe that different versions of this parameter are slightly deferent.

According to Table 2, the value of stability parameter that 
characterizes SRV is slightly smaller than stability values of three 
spatial variables, but it is still as large as 0.951. Values of stability 
presented in Table 6 depend on the noise level. Therefore, the 
information presented in this Table is not sufficient for SRV stability 
characterization. More informative parameter that characterizes SRV 
stability is presented in Table 3. This Table contains normalized 
values of relative stability variable, ,relSt  This parameter is defined 
by Eq. 29.

( ) ( ) ( ) ( )3 * / (relSt St Var st qRangeEast St qRangeNorth St qRangeDepth= + +
    

(29)

According to Table 3 relative stability of SRV is about 6% smaller 
compared to smallest stability of quantile type variables, but it is still 
as large as 0.979.
Table 1 Values of criterion Importance of twelve quantile-type variables 
calculated using linear regression, random forest, and regression tree methods

Linear 
regression 

Random 
forest 

Regression 
tree 

qmang1 5.859 10.654 1
qmagn2 3.727 1 92.814
qman3 0 0.952 86.826
qmagn4 1.109 0.32 55.689
qRangeDepth 100 71.543 40.12
qRangeEast 39.841 100 34.731
qRangeNorth 42.885 76.994 8.383f 
trange 24.382 99.329 1.198
qrgEastNorth 34.824 17.121 1.198
qrgDepthEast 49.92 70.574 2.994
qrgDepthNorth 19.326 52.391 9.201

Table 2 Stability of three spatial parameters and stability of SRV

Variable qRange 
East

qRange 
North

qRange 
Depth SRV

Stability 0.957 0.98 0.978 0.951

Table 3 Relative stability of spatial parameters qRangeEast, qRangeNorth, 
qRangeDepth and relative stability of SRV

Variable qRange 
East

qRange 
North

qRange 
Depth SRV

Relative 
stability

0.985 1.009 1.007 0.979

Monte Carlo association between SRV and newly 
constructed variables

In this paper, two criteria are used for selection of the most 
appropriate predictor variables. The first one is Monte Carlo 
Association criterion that is used as a tool for preliminary analysis of 
variables importance. The higher is Monte Carlo association the more 
important variable is. The second criteria is to use alternative machine 
learning techniques, including: Linear regression, Random Forrest 
and Regression tree, to determine the respective value of addition of 
different variables to the set of predictor variables.

Monte Carlo association criterion is calculated using multiple 
versions of correlation coefficients between SRV values and values 
of newly designed variables. Each version of correlation coefficient 
is obtained using a set of values of correlated variables and SRV built 
using randomized Monte Carlo resampling. 

https://doi.org/10.15406/mojes.2024.09.00305


Machine Learning for Stimulated Reservoir Volume (SRV) Prediction Using 4-D Micro-seismic Data 41
Copyright:

©2024 Aminzadeh et al.

Citation: Aminzadeh F, Katz S. Machine Learning for Stimulated Reservoir Volume (SRV) Prediction Using 4-D Micro-seismic Data. MOJ Eco Environ Sci. 
2024;9(2):38‒44. DOI: 10.15406/mojes.2024.09.00305

Monte Carlo association criterion is defined by Eq. 30

( ) ( ) ( )( )( ( ,Association var mean cor SRV r var rr=
              

(30)

In Eq. 30 SRV(r) and var(r) are values of SRV and variable created 
via r-th randomized Monte Carlo resampling, cor(SRV{r), var(r)) is 
correlation coefficient calculated using pair SRV{r) and var(r) (Table 
4).

Table 4 Association criterion calculated using SRV and not normalized 
versions of variables

Monte Carlo 
index trange event-

minute
qRange 
Depth

qRange 
North

qRange 
East

r=1 0.775 -0.678 0.872 0.811 0.777
r=2 0.793 -0.749 0.8 0.757 .0.757
r=3 0.786 -0.766 0.782 0.782 0.751

According to Table 5 different variables show different patterns of 
dependence of values of association criterion from changing values 
of parameter p. It also follows from Table 5 that parameters trange, 
qRangeDepth, qRangeEast, and qRangeNorth are characterized by 
high values of association criterion if p=1.

Table 5 Association criterion calculated using SRV and normalized variables 
transformation

Power transfor-
mation trange event-

minute
qRange 
Depth

qRange 
East

qRange 
North

p=1 0.774 0.679 0.874 0.811 0.781
p=2 0.54 0.515 0.859 0.722 0.814
p=3 0.349 0.375 0.797 0.485 0.785

Analysis of differences in variables importance 
obtained using different machine learning methods

Criterion Importance is the criterion specifically related to analysis 
of performance of machine learning methods of specific types.19 In 
previous section of this paper analysis of association between potential 
predictor variable and variable to be predicted was done without 
considering the fact that different variables may be characterized by 
different levels of importance to different machine learning methods. 

Importance of quantile-type untransformed variables characterizing 
linear regression, random forest, and regression tree are shown in Table 
1. This table illustrates differences in importance values calculated 
using different ML methods. This means that training sets compiled 
for different ML methods may include different predictor variables. 

According to Table 6 different variables are characterized by 
different values of parameter importance if different forecast methods 
are to be used. Four quantiles of magnitudes are characterized 
by very low values of importance in case of linear regression, but 
values of this parameter are at much larger in case of regression tree. 
On the other hand, variables qrgEastNorth and qrgDepthNorth are 
characterized by values of this parameter significantly larger in case 
of linear regression compared to random forest.

Analysis of accuracy of machine learning forecast using 
predictor variables constructed using only information 
about time of occurrence of microseismic events

This section and the following section of this paper illustrate the 
possibility of using only time of occurrence microseismic events 
to produce an accurate enough SRV forecast. Special attention 
is devoted to usage of predictors of this specific type is due to the 
relative simplicity of collecting data on time of microseismic events 

and building training set without use of any additional information 
about magnitude and spatial distribution of events.

Table 6 Values of criterion Importance of twelve quantile-type variables 
calculated using linear regression, random forest, and regression tree methods

 Linear 
regression 

Random 
forest 

Regression 
tree 

qmang1 5.859 10.654 1
qmagn2 3.727 1 92.814
qman3 0 0.952 86.826
qmagn4 1.109 0.32 55.689
qRangeDepth 100 71.543 40.12
qRangeEast 39.841 100 34.731
qRangeNorth 42.885 76.994 8.383f 
trange 24.382 99.329 1.198
qrgEastNorth 34.824 17.121 1.198
qrgDepthEast 49.92 70.574 2.994
qrgDepthNorth 19.326 52.391 9.201

Three forecast methods - linear regression, regression tree, and 
random forest, are used in this chapter, and accuracy of forests done 
by these methods is analyzed. Regression tree20–22 is generalization 
of two methods – linear regression and decision tree. The algorithm 
of regression tree includes iterative partition of the input data set into 
smaller subgroups and then fit regression model for each subgroup. 
This machine learning method has been used in different areas of 
science, such as geology environmental science, and medical science 
[-]. Random Forest Regression23–25 is a supervised learning algorithm 
that uses ensemble learning method for regression and combines 
ensemble learning with decision tree algorithm. This method is widely 
used in different science areas.

Forecasts by all three methods is done according to Eqs 31 and 
32 using functions train, trainControl  and predict available in opens 
source CARET package, short for classification and regression 
training.26

( )~ ., , , obj train srvk varTrainSset method met trainControl fitConjtrol< − = =
    

(31) 

( ),pred predict obj varTestSet< −
                                                

(32)

In Eqs. 31 and 32 VarTrainset  and varTestSet  are, respectively, 
sets of predictor variables in train and test sets, met is forecast method 
taking one of three values - linear regression, regression tree, and 
random forest.

One of the goals of this and the following section is to do 
quantitative analysis of accuracy of forecast performed by three 
forecast methods. Another goal is to illustrate the possibility of 
using only time of occurrence microseismic events to construct a 
set of predictor variables using which may lead to accurate enough 
SRV forecast. Special attention to usage of predictors of this specific 
type is due to the relative simplicity of collecting data on time of 
microseismic events and building training set without use of any 
additional information about magnitude and spatial distribution of 
events.

Variables of the first and second levels used as predictors in this 
section are: var1, var2, var3, var4.

These variables are defined by Eqs 33 and 34.

1 ;  2var trange var eventminute= − = (33)
3 33     4var trange var eventminute= =  (34)
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The forecast model is defined by Eq. 33.

~ 1 2 3 4SRV var var var var+ + + (35)

SRV itself and SRV forecasts done by linear regression, random 
forest, and regression tree are shown Figures 4–6. 

According to Figure 4 accuracy of SRV forecast done by linear 
regression is low. The values of forecast shown at Figure 4 fluctuate 
strongly and large SRV values are strongly different from respective 
forecast results.

Figure 5 and Figure 6 show forecasts done by regression tree and 
random forest. According to these figures accuracies of forecasts done 
by both regression tree and random forest is high, whereas in case of 
linear regression forecast accuracy is much lower.

Quantitative characterization of accuracy of forecasts done using 
forecast shown at Figures 4–6 is presented in Table 7.

Figure 4 SRV and SRV forecast done using linear regression.

Figure 5 SRV and SRV forecast done using regression tree.

Figure 6 SRV and SRV forecast done using random forest.

Table 7 Values of two forecast accuracy parameters of three forecast 
methods. Forecast model is defined by Eq. 35

Method r.squared Correlation
Linear regression 0.304 0.549
Random forest O,632 0.835
Regression tree 0.821 0.906

According to Table 7 best results are obtained using regression 
tree, whereas linear regression obviously underperforms.

Improvement of accuracy of SRV forecast using six 
newly designed predictor variables

This section presents additional illustrations of the importance of 
feature engineering used as a tool for preparing to machine learning 
forecast.

Forecast model used in this section is defined by Eq. 36

~ 3 4 5 5 6SRV trange eventminute var var var var var+ + + + + +   (36) 

Where var4 and var5 are defined by Eqs 35 and 36 

( )5var log trange==
                                                                   

(37)

( )6var log eventminute==
                                                          

(38)

Values of correlation coefficients ( ), cor SRV Predictor   are shown 
in Table 8. According to this table constructed variables var5 and 
var6 are characterized by absolute values of correlation coefficients 
exceeding those of initial variables trange and eventminute. Therefore, 
if the machine learning model defined by Eq. 34 is used, then more 
accurate forecasts may be produced.

Table 8 Values of correlation coefficients cor (SRV, Predictor)

Predictor Trange eventminute var3 var4 var5 var6

Correlation 0.769 -0.675 0.513 -0.508 0.775 -0.775

Figure 7 illustrate domination of absolute values of correlation 
coefficients cor(SRV, Predictor) calculated using predictors var5 and 
var6. Horizontal discreet line is drawn at the value of correlation 
coefficient that characterizes variable trange. One can observe 
that values of correlation coefficients that characterize predictors 
eventminute, var3, and var4 are3 are below discreet line, whereas 
correlation coefficients of variables var5 and var6 are3 above this line.

SRV itself and SRV forecasts done by done by linear regression, 
random forest, and regression tree are shown at Figures 8–10. 

Quantitative characterization of accuracy of forecasts done using 
forecast shown at Figures 8–10 is presented in Table 13.

Figure 7 Plot of absolute values of correlation coefficients.

Figure 8 SRV and SRV forecast done using linear regression.
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Figure 9 SRV and SRV forecast done using regression tree.

Figure 10 SRV and SRV forecast done using random forest.

According to Table 9 the best results are obtained using regression 
tree.

Table 9 Values of two forecast accuracy parameters of three forecast 
methods. Forecast model is defined by Eq. 36

Method r.squared Correlation
Linear regression 0.58 0.69
Random forest O,798 0.894
Regression tree 0.792 0.892

Conclusion
a) New procedure of stable, high accuracy SRV estimation 

and optimization of SRV forecast is presented in this paper. 
It includes time-related data segmentation, new multilevel 
feature engineering, analysis of associations and importance of 
engineered variable and machine learning forecast.

b) Multilevel feature engineering introduced i8nn this paper and 
utilized in construction of predictor variables of different levels

c) Among time-dependent predictor variables of the first level 
are variables trange and eventminute. In addition to these 
time dependent variables, first-level quantile-type variables 
qRangeDepth, dRangeEast, and qRangeNorth are constructed.

d) Variables of the second level are built using power and 
logarithmic transforms of the first level variables. Stimulated 
reservoir volume (SRV) is calculated as the second level feature 
engineered variable. It is defined as the product of three first 
level quantile-type variables – qRangeNorth, qRangeEast, and 
qRangeDepth. Using quantile-type variables for SRV calculation 
allows to exclude effect of outliers.

e) Estimated SRV values are characterized by high stability. 
Estimated SRV relative stability is only 5% lower than relative 
stability of quantile-type variables used for SRV calculation.

f) Parameters r.squared and mutual correlations between CRV and 
SRV forecasts are used to quantitively characterize accuracy of 
SRV forecasts Results of analysis of accuracy of SRV forecasts 
demonstrate that accuracy of forecast done using even such 
simplistic method as linear regression is characterized by high 
accuracy if appropriate set of feature engineered predictor 
variables is used. Forecasts done by more complex ML methods 
are characterized by even higher accuracy. For instance, 
forecast done using machine learning method random forest is 
characterized by values of accuracy parameters r.squared and 
correlation between SRV and its forecast equal, respectively, 
0.798 and 0.894.
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