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Introduction
Climate change over the last few decades has increased the need 

for information on the amount of plant biomass present in a given 
ecosystem1 and requires reliable estimates of the carbon stock in 
different ecosystems.2–4

According to scientists, in order to stabilize the climate by 2050 
and prevent it from becoming 2° Celsius warmer than in 1970,5 total 
greenhouse gas emissions from all countries need to be halved. To 
achieve this, a range of solutions has been proposed. These all are 
based on the principle of reducing anthropogenic emissions and 
increasing the storage potential of carbon sinks.

According to Poulsen et al.,6 Black Africa is a stakeholder in 
climate negotiations because it is home to the world’s second largest 
forest massif: the Congo Basin. These forests store large quantities of 
carbon and therefore require precise allometric regressions for their 
estimation. 

Generally speaking, forest biomass estimates in tropical rainforests 
are interesting for several reasons. Firstly, to understand basic 
properties of forest conditions such as productivity and structure.7,8 
Biomass is also important for estimating the amount of carbon 
dioxide sequestered in forests.9–11 The amount of biomass varies 
between different forest types, but also between sites within forest 
types due to different climatic conditions, soils, altitudes, history 
of land use and human disturbances.12 The amount of biomass for 
individual trees varies with factors such as size (diameter at breast 
height (dbh) and tree height (h), wood basic density (dry mass 
weight over green volume), tree species, branching patterns and tree 
shape.9,11,13,14 There are two main approaches for estimating biomass 
based on forest inventory data: 1) using allometric biomass models 
or 2) using volume equations combined with expansion factors.15 The 

combination of volume equations and expansion factors to estimate 
biomass is to some extent still used16 but by far the most common 
approach is to estimate biomass through allometric models based on 
easily measurable variables such as dbh, h and other tree variables.9–11 
Provided that information on individual trees is available, and that 
appropriate models exist, this is generally the most straightforward 
and best way to quantify biomass. However, it is also important to 
note that the choice of allometric models is the most important source 
of error in biomass estimation for tropical forests.16,17

Numerous allometric models which estimate aboveground biomass 
(AGB, in kg dry mass) of trees, have been developed for tropical forests 
in sub-Saharan Africa. A recent review of models for this region18 

revealed that for tropical rainforests (tropical moist forests) quite 
many species- specific models while fewer general models covering 
multiple tree species existed. Examples of well- documented general 
models estimating AGB for rainforests, however, are provided from 
Cameroon,19,20 Ghana,21 Gabon22 and Madagascar.23 To our knowledge 
no biomass models have been developed for tropical rainforests in 
central Africa. Pantropical biomass models have also been developed9 
and used for estimating AGB for rainforests in the region, but no data 
from Africa were available for the development of these models. 
However, improved models for estimating AGB comprising data also 
from this continent have recently been developed.11 In addition to 
biomass from stem, branches and twigs/leaves, a tree also consists 
of belowground biomass in root crown and roots. Since excavation 
of belowground biomass is very laborious, few models for estimating 
belowground biomass (BGB, in kg dry mass) of trees have been 
developed. The only example that we know from tropical rainforests 
is provided by Liu et al.,24 in Cameroon, where 14 trees from six 
different species were used to develop models, however, they focused 
on trees from plantations and previously logged secondary forests.
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Abstract

This study is the first to develop allometric models for estimating above-ground biomass 
(AGB) and below-ground biomass (BGB) of individual trees based on destructive sampling 
procedures in the montane tropical forests of Central Africa. As Cameroon is committed 
to Reducing Emissions from Deforestation and Forest Degradation (REDD) initiatives, it 
is particularly important for the country to develop such models. The data used for the 
modeling covered a wide range of tree species (34) and diameters at breast height (dbh) 
from 6 to 117 cm. The AGB and BGB models were developed from 60 and 30 tree samples, 
respectively. The developed AGB models explained a large part of the biomass variation 
(Pseudo-R2 0.80-0.87) and performed well when tested over different size classes. A 
model with dbh, basic wood density and total tree height (h) as independent variables is 
generally recommended for application if appropriate information on h is available. Tests 
of previously developed AGB models with modeling data, where large mean prediction 
errors occurred, generally demonstrated the importance of developing local models. BGB 
models performed reasonably well over different size classes, and biomass per unit area will 
probably be appropriately estimated when applying them. Some of the challenges related to 
the estimation BGB for small trees mean, however, imply that, the models may need to be 
recalibrated if more data becomes available.
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As to date, there are no specific models for estimating BGB, so 
the recommended estimation method is to multiply AGB estimates 
and root to shoot ratios (RS-ratio) to obtain BGB estimates.25–27 
This method, however, is considered relatively inaccurate due to for 
example different edaphic factors or soil conditions that influence root 
allometry.28

The Cameroon’s tropical rainforests cover an estimated 22,5 
million hectares29 which include dense evergreen and semi-evergreen 
rainforests at low and medium altitude, submontane and montane, 
as well as mangroves. To date, only submontane forests are the least 
known, and no biomass model has been developed for these tropical 
rainforests. Also, Cameroon has recently started the first sample 
plot based national forest inventory.30 At the same time, Cameroon 
is involved in initiatives to Reduce Emissions from Deforestation 
and forest Degradation (REDD), which requires the development of 
biomass models estimating AGB and BGB. In addition, fuel wood 
and fodder from branches, twigs and leaves are important limited 
resources that should be inventoried. Biomass models estimating such 
resources are therefore also desirable.

The main objective of this study was to develop allometric models 
for estimation of AGB and BGB of individual trees for rainforests 
in Cameroon. We also tested pantropical models9,11 and local models 
from Africa13,14,23,31 on our modelling data. In addition, models for 
estimating AGB for tree components such as stems, branches, and 
twigs/leaves, and statistics on RS-ratios were presented.

Methodology
Study area and selection of sample trees

Data collection was carried out in the submontane forest located 
between 4° 04′ 23″ North and 9° 06′ 57″ East on Mount Etinde (1713 
m). This is a submontane forest with continuous crowns that can only 
be found on this mountain. This forest is characterized by a closed 
stand with medium-sized trees (25-30 m tall) whose tops are more or 
less contiguous. Floristically, the most characteristic trees are from 
the Sapotaceae, Guttiferae, Sterculiaceae, Meliaceae, Olacaceae, 
Flacourtiaceae and Euphorbiaceae families (Figure 1).

Figure 1 Location of Mount Etinde, South-west, Cameroon.

Trees were sampled following the orientation of the four cardinal 
points. To ensure variation in tree allometry and basic wood density, 
trees were selected over a wide diameter range from 15 cm to 270 
cm. Neither proximity to roads nor harvesting activities influenced 
tree selection.32 Thirty (30) of the 60 trees were selected for BGB 
measurements. The selection of these trees followed similar criteria to 
those of the trees selected for BGB determination.

Prior to felling, the diameter at breast height (dbh) and height (h) 
of all sample trees were measured. dbh measurements of the sample 
trees were taken using a calliper or diameter tape. For trees with 

buttresses extending the dbh measuring point, diameter was measured 
30 cm above the buttress.33 Tree heights were measured by using a 
Vertex hypsometer. Summary statistics of the trees are shown in Table 
1.
Table 1 Summary statistics of dbh and height of sample trees

Section Variables N Mean Min. Max. St. dev.

Aboveground
Dbh (cm) 60 50.8 6 117 25.6
Height (m) 60 27.3 6.4 50 10.4

Belowground
Dbh (cm) 30 52.8 6 117 27.5
Height (m) 29 27.3 8 50 10.2

Destructive sampling and laboratory procedures

The point of demarcation between aboveground and belowground 
biomass components were at a stump height of 30 cm. The aboveground 
part was divided into three components: stem, branches, and twigs/
leaves. Stems (from the stump to the point where the first large branch 
protrudes the stem) and branches (diameter cut-off between branches 
and twigs was 2.5 cm) were cut into measurable billets with lengths 
of 0.2-1.5 m depending on their weight. Thereafter each billet was 
weighed separately for green mass using a spring balance (0.1 kg 
accuracy). Twigs and leaves were tied into bundles and weighed for 
green mass.

Full excavation of all belowground parts of trees is very 
demanding in terms of time consumption. Since resources for field 
work are limited, a choice has to be made between excavating a few 
roots in full24 and to apply root sampling procedures to obtain data for 
a larger number of individual root systems.34 In such procedures, only 
a number of roots from each root system are fully excavated, and then 
the information from the excavated roots is used to estimate biomass 
also for the roots not excavated.

In the present study, we generally followed the root sampling 
procedures as described by Tchinmegni & Djeukam.35 For each root 
system, three main roots (small, medium and large) were selected 
from the root crown, measured for basal diameter, then traced to a 
minimum diameter of 1 cm and weighted for green mass. Similarly, a 
maximum of three side roots (small, medium and large) were selected 
from the excavated main roots, measured for basal diameter, traced 
to a diameter of 1 cm and weighted for green mass. Finally, all basal 
diameters of unexcavated main roots originating from the root crown, 
and all basal diameters of unexcavated side roots originating from 
main roots, were measured.

The excavation of the main roots was carried out by first removing 
top soil around the trees up to where all main roots originating from 
the root crown were partially exposed. This procedure was important 
for reducing work load of selecting main sample roots. The basal 
diameters of main sample roots were measured by using a diameter 
tape rather than a calliper because the roots tended to be oval in 
shape. When main roots encountered obstacles (stone or another 
tree); the diameters at the breakage point were also measured. Three 
samples from each tree were collected from each tree components 
(stem, branches, twigs/leaves, root crowns and roots) for laboratory 
analyses. The green mass weights of the samples were determined 
by using an electronic balance (0.001 kg accuracy) while in the field. 
The wood samples were oven dried in a laboratory with a temperature 
of 105°C,36 with interval monitoring of four hours until they attained 
constant weights, then their dry mass weights were determined 
immediately by using an electronic balance. For each wood sample, 
the dry to green ratio (DG-ratio) was determined by dividing dry mass 
weight with green mass weight. Wood basic density values were not 
determined from the wood samples.
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Data processing

All data processing and analyses were carried out with R software. 
For the aboveground components of the trees, the total green mass 
weights of each tree component were multiplied by their respective 
average DG-ratios to obtain the component dry mass weights. The 
total AGB was found by summation of dry mass weights from stem, 
branches and twigs/leaves. On average, 54 %, 39% and 7% of AGB 
were distributed to stems, branches, and twigs/leaves, respectively. 
The mean total AGB of the sampled trees was 2453 kg while the 
minimum and the maximum were 11 kg and 10603 kg, respectively. 
A scatter plot of total AGB versus dbh is shown in Figure 2 (upper 
panel). The BGB of trees was computed as follows:

1. A side root model was first developed by regressing green mass 
weights (Y, kg) and basal diameters (D, cm) of all selected side 
roots. We decided to apply a power law model, which is a general 
model describing organism allometry.37 The side root model (

1.091431.19466 *Y D= , n = 55, RMSE = 5.2kg, Pseudo-R2 = 0.50, 
MPE% = 1.2, where RMSE, Pseudo- R2 and MPE% are defined 
in Section 2.4) was then utilized to estimate green mass weights 
of unexcavated side roots and unexcavated parts (broken) of main 
roots.

2. Total green mass weights of main roots were found by summing 
the estimated weights of the side roots, the estimated weights 
of broken parts of the main root (if broken), the weights of the 
excavated side roots and the weights of the excavated parts of 
the main root.

3. Similarly, a main root model was developed by regressing total 
green mass weights (Y, kg) and basal diameters (D, cm) of all 
main roots. The main root model ( 1.748090.37124 *Y D= , n = 87, 
RMSE = 27.1kg, Pseudo-R2 = 0.78, MPE% = 0.2) was utilized 
to estimate green mass weights of unexcavated main roots 
originating from the root crown.

4. Total green mass weights of all roots were found by summing 
the estimated weights of the main roots not excavated and the 
weights of the excavated main roots.

5. Finally, the conversion of root and root crown green mass weights 
to dry mass weights was done by multiplying green mass weights 
by the respective average DG-ratios. Thereafter, root and root 
crown dry mass weights of each tree were summed to total BGB. 
A scatter plot of BGB versus tree dbh is shown in Figure 2 (lower 
panel).

Figure 2 Relationships between dbh (cm) and aboveground biomass (upper 
panel, n=60) and belowground biomass (lower panel, n=30).

Model development and evaluation

Initially we tested many different model forms. However, we 
decided to apply the following frequently used nonlinear models (e.g. 
Henry et al.,13) to fit the AGB and BGB data:

* bB a dbh=                                                                                     (1)

* *b dB a dbh ρ=                                                                                  (2)

* *b cB a dbh h=                                                                           (3)

* * *b c dB a dbh h ρ=                                                                     (4)

Where B = dry mass in kg, dbh = diameter at breast height (cm), 
ρ = wood basic density, h = total tree height (m), a, b, c and d = 
model parameters to be estimated. The global wood density (GWD) 
database38,39 were accessed to obtain values for individual species 
for model development and where needed in this study. When ρ was 
available from several sites for a certain tree species we used the 
average values. The PROC NLIN procedure in SAS was applied to 
estimate the parameters of the models. A broad range of initial values 
for the model parameters were tested to ensure global convergence 
solutions.

The precision of the models was evaluated by means of the root 
mean square error (RMSE), Pseudo- R2 and statistical significance 
of model parameter estimates. Models with parameter estimates not 
significantly different from zero (p > 0.05) were not evaluated further. 
These were computed as follows;

1/2
SSR

RMSE
n

=
 
 
                                                                                   

(5)

2 1
SSR

Pseudo R
CSST

− = −
 
 
 

                                                        (6)

Where SSR = Sum of residuals squares, CSST= Corrected total 
sum of squares, and n = number of observations.

Further evaluations of the models were also done by means of 
mean prediction errors (MPE);

e
MPE

n
= Σ                                                                                         (7)

% *100
MPE

MPE
MOB

=
 
 
 

                                                                  (8)

Where MPE are residuals (differences between estimated and 
observed biomass), and MOB is mean observed biomass (Table 2).

Results
Biomass models for different tree components and corresponding 

fit statistics are shown in Table 3. For the total AGB models, model fit 
increased only slightly when ρ was included as independent variable 
in addition to dbh (model 2) as compared to model 1. The inclusion 
of h (model 3), and h and ρ (model 4) improved fit statistics. For the 
stem biomass models, inclusion of h (model 3) was associated with 
largest improvement in fit statistics while including ρ had less effect 
(models 2).

When dbh, h and ρ were used as independent variables, the 
parameter estimate for ρ was not significantly different from zero. The 
branches and twigs/leaves models had generally lower fit statistics 
compared to the total AGB and stem models. The overall MPE% 
for the models varied between -4.5% and 3.4%, but none were 
significantly different from zero. For total AGB model 1, MPE values 
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significantly different from zero (α = 0.05) appeared for one dbh class 
and one h class (Table 4). No differences were significantly different 
from zero for other models. Although not significantly different from 
zero, the MPE% values for small trees were relatively high for model 
2 and model 3. Model 4 had lower MPE% values as compared to all 
the other models and no pattern were seen over the size classes. For 
the BGB models, adding ρ in addition to dbh (model 2) as compared 
to when dbh was the only independent variable (model 1), fit statistics 
improved considerably. When adding h as independent variable in 
addition to dbh and ρ (model 4), only small improvements in the 

fit statistics were obtained. The performance of BGB models on 
modelling data is presented in Table 6. The overall MPE% values were 
relatively small and not significantly different from zero, however, 
all models significantly over estimated biomass for the smallest trees 
according to dbh class.

The MPE values for previously developed AGB models are shown 
in Table 5. The Chave et al.,9, Chave et al.,11, Henry et al.,13 and 
Fayolle et al.,20 were significantly over estimated biomass while MPE 
values were not significantly different from zero for the Vellidient et 
al.,23 and Ngomanda et al.,14 models.

Table 2 A number of previously developed AGB models were tested on our data. This included

Autors Models

Chave et al.,9

Chave et al.,11

Henry et al.,13

Vieilledent et al.,23

Fayolle et al.,20

Ngomanda et al.,14

Table 3 Models estimating total aboveground, stems, branches, twigs/leaves and belowground biomass

Components Models RMSE (kg) Pseudo-R2

Total aboveground

1.94401. B 0.9635*dbh= 1020.3 0.8

1016.9 0.81

1.4365 0.86133.B 0.4020*dbh *h= 920.5 0.84

857.7 0.87

Stems

2.52721.B 0.0450*dbh= 658.2 0.82

615.2 0.84

1.4802 1.72113.B 0.0089*dbh *h= 458.9 0.91

Branches

1.37261.B 4.1964*dbh= 786.4 0.42

697.8 0.56

Twigs/leaves

0.94401.B 2.0830*dbh= 61.2 0.33

59.8 0.39

Belowground

1.168011.B 7.5811*dbh= 312.7 0.71

254.4 0.81

251.2 0.82
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Table 4 Performance of the total aboveground biomass models

Models Class n Observed biomass (kg) Estimated biomass (kg) MPE (kg) MPE (%)

1

dbh ≤ 28 15 191 249 58 30*

28 < dbh ≤ 55 15 1681 1605 -77 -5

55 < dbh ≤ 64.5 14 3091 2924 -167 -5

dbh > 64.5 16 4738 4909 171 4

h ≤ 20.4 15 191 275 84 44

20.4 < h ≤ 27.6 15 1796 2381 585 33*

27.6 < h ≤ 34 15 3254 3020 -234 -7

h > 34 15 4569 4142 -428 -9

All 60 2453 2455 2 0

2

dbh ≤ 28 15 191 224 33 17

28 < dbh ≤ 55 15 1681 1545 -137 -8

55 < dbh ≤ 64.5 14 3091 2828 -267 -9

dbh > 64.5 16 4738 4956 212 4

h ≤ 20.4 15 191 244 54 28

20.4 < h ≤ 27.6 15 1796 2275 479 27

27.6 < h ≤34 15 3254 3069 -186 -6

h > 34 15 4569 4096 -474 -10

All 60 2453 2421 -32 -1

3

dbh ≤ 28 15 191 254 63 33

28 < dbh ≤ 55 15 1681 1706 25 2

55 < dbh ≤ 64.5 14 3091 3041 -50 -2

dbh > 64.5 16 4738 4750 13 0

H ≤ 20.4 15 191 239 48 25

20.4 < h ≤ 27.6 15 1796 2049 253 14

27.6 < h ≤ 34 15 3254 2960 -294 -9

h > 34 15 4569 4617 48 1

All 60 2453 2466 14 1

4

dbh ≤ 28 15 191 211 20 10

28 < dbh ≤ 55 15 1681 1664 -17 -1

55 < dbh ≤ 64.5 14 3091 2980 -161 -5

dbh > 64.5 16 4738 4823 85 2

h ≤ 20.4 15 191 184 -6 -3

20.4 < h ≤ 27.6 15 1796 1814 18 1

27.6 < h ≤ 34 15 3254 3015 -239 -7

H > 34 15 4569 4740 171 4

All 60 2453 2439 -14 -1

Significance level: ***p < 0.001, **p < 0.01, *p < 0.05

Table 5 Performance of previously developed aboveground models

Models Sites Variables included Observed biomass (kg) Estimate d biomass (kg) MPE (kg) MPE (%)
Chave et al.9 (I) Pantropical dbh, ρ 2453 3692 1240 51***
Chave et al.11 (II) Pantropical dbh, ρ, h 2453 3170 717 29**
Henry et al.13 (I) Ghana dbh 2453 3599 1146 47***
Henry et al.13 (II) Ghana dbh, h 2453 3328 876 36***
Vellidient et al.23 Madagascar dbh, ρ, h 2453 2566 114 5
Fayolle et al.20 Cameroon dbh, ρ 2453 3626 1174 48**
Ngomanda et al.14 (I) Gabon dbh, ρ 2453 2571 118 5
Ngomanda et al.14 (II) Gabon dbh, ρ, h 2453 2402 -51 -2
Chave et al.11 Pantropical dbh, ρ, h 2453 3174 722 29**

Significance level: ***p < 0.001, **p < 0.01, *p < 0.05
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Table 6 Performance of the belowground biomass models

Model Class n Observed biomass (kg) Estimated biomass (kg) MPE (kg) MPE (%)

1

dbh ≤ 36.5 10 153 269 115 75***
36.5 < dbh ≤ 64.5 10 1010 915 -95 -9
dbh > 64.5 9 1238 1264 26 2
H ≤ 12 10 233 373 139 60*
12 < h ≤ 19 10 1002 905 -97 -10
h > 33 9 1158 1160 3 0
All 29 785 801 16 2

2

dbh ≤ 36.5 10 153 210 56 37*
36.5 < dbh ≤ 64.5 10 1010 873 -137 -14
dbh > 64.5 9 1238 1205 -33 -3
h ≤ 12 10 233 271 37 16
12 < h ≤19 10 1002 893 -109 -11
h > 33 9 1158 1115 -43 -4
All 29 785 747 -38 -5

4

dbh ≤ 36.5 10 153 212 59 39*
36.5 < dbh ≤ 64.5 10 1010 897 -112 -11
dbh > 64.5 9 1238 1193 -64 -5
h ≤ 12 10 233 249 15 6

12 < h ≤ 19 10 1002 868 -134 -13
h > 33 9 1158 1166 8 1
All 29 785 747 -38 5

Significance level: ***p < 0.001, **p < 0.01, *p < 0.05

The mean RS-ratio of trees sampled for both AGB and BGB was 
0.49 and varied from 0.14 to 2.24. A simple log-linear regression 
model showed that RS-ratio decreased with increasing dbh (Figure 3).

Figure 3 Relationship between dbh (cm) and RS-ratio (n=30).

Discussion
This study was the first to develop models estimating AGB and 

BGB for rainforests in central Africa based on destructive sampling 
procedures. The 60 sample trees used for the modelling was fewer than 
100 recommended as a minimum by Vorster et al.,40 but more than in 
most models.17,41,42 The inclusion of large data ranges regarding tree 
size is of particular importance in tropical forests because large trees 
usually account for a very large part of the biomass.35 However, heavy 
work load and restricted funding prevented us from collecting trees 
larger, in this case, trees exceeding dbh of 117 cm, but at least including 
the most frequent and rare tree species. All models for total AGB 
models had parameter estimates different from zero and reasonably 
good fit statistics (Pseudo-R2 ranging from 0.80-0.87) (Table 3). They 
also behaved relatively well when tested over different size classes 
(Table 4). As such all the models can reasonably be applied for 
estimating biomass. The inclusion of all three independent variables 

(model 4), improved considerably model fit, and behaved well over 
all size classes while the other models tended to overestimate biomass 
for the smallest trees based on dbh and h. If all tree variables are 
available, we therefore recommend model 4 to be applied.

Many authors have argued for the inclusion of h as an independent 
variable in biomass models. Manolopoulos et al.,43 for example, 
argued that inclusion of h has the advantage of expanding the 
applicability of models because height-diameter relationships depend 
on environmental conditions, which vary between sites.44 Rarely h 
for all trees is available from forest inventory. The general height-
diameter models for different forest types including rainforests have 
been developed for Cameroon.16 Although we generally recommend 
model 4 to be applied, one should be aware that the use of an estimated 
h in biomass models will introduce additional errors. However, the 
accuracy of tree h measurements in closed-canopy forests can be 
poor.45,46 The accuracy of the estimated or measured h should therefore 
be carefully considered in the choice between model 2 and 4 when 
estimating total AGB.

The performance of the previously developed AGB models on 
our modelling data (Table 5) generally demonstrated the importance 
of developing local models. The relationship between biophysical 
properties of trees and biomass is affected by site and regional 
conditions, so it is not surprising that models fitted with data closer to 
a test site are more precise; and that model fitted with data from large 
geographical ranges, such as pantropical models, could also yield 
relatively large errors for locally.47,48 Exact reasons for the deviations 
are difficult to identify. Tucker et al.,49 regarded the selection of 
sample trees as a major source of uncertainty in model development 
and claimed that the trees are probably never selected at random, but 
instead are often selected near roads (i.e. are they representing the 
entire area?) and in relation to logging activities (i.e. are the trees 
with the best form selected?). Djomo et al.,50, Henry et al.,13 and 
Fayolle et al.,20 selected sample trees in relation to logging activities. 
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Duncanson et al.,51 and Chave et al.,11 also pointed out measurement 
errors and destructive sampling procedures as important sources of 
uncertainty in the development of biomass models. Measurements 
of dbh and h in tropical rainforest are challenging and associated 
with errors. In some studies, biomass of the lower parts of large 
trees was determined from volume based on geometrical measures 
and wood specific gravity (e.g. Fayolle et al.,20). In the present study 
selection of sample trees was not influenced by closeness to roads 
or harvesting activities and all tree parts were weighted. The most 
likely explanation for the deviations between the estimated AGB 
from the previously developed models and our observed values is the 
actual differences in tree biomass quantities due tree shape that could 
have been influenced by the heavy commercial harvestings that took 
place in periods before 1990, where possibly large proportions of the 
well-shaped and big trees were preferred. The mean RS-ratio of trees 
selected for BGB modelling was 0.49. Variation in mean RS-ratios 
for different tropical rainforests has previously been reported.25 The 
pattern of decreasing ratio with tree size agrees well with previous 
results from miombo woodland in central Africa.44 The mean RS-
ratios frequently are recommended for estimating BGB.52 However, 
if a fixed mean RS-ratio is used for a relationship that most probable 
is nonlinear (Figure 3), a bias will be introduced. Therefore, RS-ratios 
depending on dbh should be applied to estimate BGB for individual 
trees. The BGB models were significantly over estimated biomass for 
the smallest trees (Table 6). Since large trees usually account for a 
very large part of the biomass in rainforests,35 biomass per unit area 
will probably be reasonable estimated when applying these models. If 
data for BGB become available, in particular for the size ranges with 
few observations, the models for BGB could be further tested and 
possibly recalibrated.

Conclusion
The model with dbh, ρ and h as independent variables is generally 

recommended for AGB if accourate information on h is available. The 
previously developed AGB models had large mean prediction errors; 
this demonstrates the importance of local models. Challenges related 
to the over estimation of BGB for small trees, implied that models 
should be further tested and possibly recalibrated, if more BGB data 
become available.
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