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Introduction 
Fast forward to the most recent time, NO has been demonstrated to 

orchestrate a plethora of physiological function in mammals, was the 
subject of the Nobel Prize in 1998 and was named molecule of the year 
in 1992 by journal of science. Despite of animal it was first reported 
in plant in 1779 by Klepper.1 Almost two decades later by the late 
1990s, plant biologists had started to pay attention to NO playing role 
in plant immunity, initially in potato (Solanum tuberosum)2–4 and then 
two years later in Arabidopsis.5–7 However the Era is now gathering 
substantial momentum. It was undoubtedly an era of great enthusiasm 
for NO as a plant signaling molecule and today it is known to play a 
crucial role in the regulation of physiological process ranging from 
development to adaptation to biotic8–10 and abiotic stress.11 Furthering 
the application of new tools and technologies to study and addressing 
the molecular mechanisms employed by NO to control a variety of key 
cellular processes.12,13 Nitric oxide has a potent skill to encroach on a 
noticeable plant world due its enormous owndom like free radical, 
small size, no charge, short lived and permeability across biological 
membranes. It has also regulated signaling pathway for oxidative 
stress, mitochondrial activity, programmed cell death,14,15 growth and 
development in plants and responsible for the guidance of markable 
spectrum of plant cellular mechanism. The role of NO in plant may 
be equally diverse. The participation of NO in plant disease resistance 
pathways has been reported on several occasions5,6,16,17 and role of 
NO in the abscisic acid (ABA) signal transduction pathway leading 
to stomatal closure has been also demonstrated.18 The last decades, 
the role of No in tolerance of abiotic stress has established much 
consideration, it has begun to emerge as an important endogenous 
signaling molecule in the adaptation of plant to abiotic stress. As it is 
evident from the present review, recent progress on NO potentiality 
intolerance of plants to environmental stresses has been impressive.19 
These investigations suggest that, NO it possesses antioxidant activity 
and might act as a signaling in activating ROI–scavenging enzyme 
activities under abiotic stress. NO responses to stress due to salt, 
drought, temperature, UV–B and heavy metal, which in their extreme 
limit responsible for cause of serious threats and set the plants with 
impaired growth, physiological and biological activities that are 
witnessed by lost in crop growth and yield etc. This review represents 
attention to the description of numerous NO sources, synthesis, the 

myriad role of NO and the molecular mechanism underpinning their 
function. Nonenzymatic NO production, according to the equation 
should occur only at pH below 4.5, since the pKa of nitrous acid is 
about 3.2.

2 2 22 2
2HNO  NO + NO  + H O  2 NO + 2O  + H O↔ ↔

NO is involved in plant metabolism and the nitrification and 
denitrification cycle provides NO as a byproduct of nitrous oxide 
oxidation into the environment by mean of a non–enzymatic 
mechanism.20 The studies of NO on plant metabolism date back to 
the 1960s when Fewson et al.21 address the recruitment of NO by 
microorganisms and higher plants. NO was suggested to be the key 
intermediate in the metabolism of inorganic nitrogen compound in 
higher plants and nitrogen fixing organisms. It was only in 1994 that 
NO was proved to be endogenously produced in a non–enzymatic 
way through conversion of nitrogen dioxide to NO by carotenoids in 
the light.22 Several plant systems use nitrite as a substrate, according 
to the basic reaction.

+- -
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22 2 2 2
2HNO  NO + NO  + H O 2NO + 2O  + H O↔ ↔

Moreover synthesis of NO on the apoplast has also been described 
by a non–enzymatic mechanism, whereby nitrite is converted to NO 
under acidic conditions in response to abscisic acid and gibberellins.23 
These are also like Cytosolic NR (cNR), A plasma membrane–
bound NR (PM–NR) associated with a PM– nitrite: NO reductase, 
Mitochondrial electron transport, Xanthine dehydrogenase/oxidase, 
Non–enzymatic NO formation at acidic pH. Nitric oxide is produced 
by a group of enzymes called nitric oxide syntheses. These enzymes 
convert arginine into citrulline, producing NO in the process. Oxygen 
and NADPH are necessary co–factors. 24 There are three isoforms of 
nitric oxide synthase (NOS) named according to their activity or the 
tissue type in which they were first described. The isoforms of NOS are 
neuronal NOS (or nNOS), endothelial NOS (or eNOS) and inducible 
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Abstract

The colorless gaseous compound nitric oxide (NO) is a lipophilic free radical that 
diffuses readily through the plasma membrane. These attributes make nitric oxide 
ideal for a transient paracrine (between adjacent cells) and autocrine (within a single 
cell) signaling molecule. The half–life of NO in biological tissues is estimated to be < 
6 Sec. This short half–life reflects the highly reactive nature of NO. It reacts directly 
with metal complexes and other radicals and indirectly as a reactive nitrogen oxide 
species with DNA, protein, and lipids. NO was first described in 1772 as nitrous air 
by Joseph Priestly the English theologian chemist and by co–educators. He was also 
the first to describe nitrous oxide (N2O), which he named nitrous air diminished. 
Priestly’ nitrous air induced a sensation of mild drunkenness, often coupled with bouts 
of uncontrollable laughter.
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NOS (or iNOS).25 These enzymes are also sometimes referred to by 
number, so that nNOS is known as NOS1, iNOS is known as NOS2 
and eNOS is NOS.3.Despite the names of these enzymes, all three 
isoforms can be found in a variety of tissues and cell types (Figure 1).

Figure 1 Oxidative pathway of nitrous oxide syntheses.

Source: http://www.reading.ac.uk/nitricoxide/intro/no/synthesis.htm.

Both enzymatic and non–enzymatic pathways have been 
described, but there is no consensus in sight on central source of NO 
in plant, and even less its regulation. NOS isoform may also present 
in the mitochondria, including a constitutive (cmtNOS) and inducible 
(imtNOS) mitrochandrial NOS26,27 which are thought to derive 
from cytosolic nNOS and INOS, respectively. Some studies have 
failed to locate mtNOS isoform, which could be related to different 
experimental designs or methods utilized in the NOS activity assays.
NOS proteins catalyze the NADP–dependent oxidation of arginine 
(Arg) to NO and Citrulline. However, genes encoding a structurally 
related enzyme have not been identified in higher plants despite the 
completion of numerous genome projects. Oxidative mechanisms 
include the production of NO from L–arginine (L–Arg), polyamines 
or hydroxylamines. By contrast, reductive routes are dependent upon 
nitrite as the primary substrate and include reduction via NADPH 
nitrate reductase (NR), a cytosolic enzyme associated with nitrogen 
assimilation, whose primary function is the reduction of nitrate 
to nitrite28 it can further reduce nitrite to NO by the mitochondrial 
electron transport–dependent reductase,29 Which uses arginine as a 
substrate.

Oxidative pathway of no synthesis
There are three different isoforms of the NOS which classify on 

their localization Zhou et al.30 All NOS are active as homodimers 
converting L–arginine to L–citrulline and NO.

When the availability of L–arginine is reduced, these enzymes also 
produce superoxide anion and NO, which may create peroxynitrite. 
Also a loss of function mutant, no overproducer 1(nox1) has been 
reported to have several fold greater concentration of L–arginine and 
this plant line exhibits excessive NO and citrulline accumulation. 

These data therefore imply the existence of a plant NOS like enzyme. 
Further, numerous studies in both Arabidopsis and tobacco (Nicotiana 
tobacum) have implicated, such NOS like activities as the source of 
reactive nitrogen intermediates during the nitrosative burst associated 
with the plant immune function.5,6 A recent paper reported the presence 
of NOS in a single celled green algae Osteroccocus tauri. This algae 
NOS possessed 45% similarity to human NOS. This enzyme exhibited 
NOS activity in vitro and possessed similar property to animal NOS 
proteins in the terms of the km for L–arginine (12microM) and 
the rate of NADPH oxidation. Unfortunately, these genes to date, 
no direct ortholog seem to be present in Arabidopsis and higher 
plants.31 In the late 1990s, the palate of available tools to dissect NOS 
production was composed by several macrophagic NOS compound 
inhibitors such as NGmonomethyl L–arginine (NMMA) and arginine 
analogs, and assay for arginine to citrulline conversion were used 
to detect the presence of NOS like enzymes in the different plant 
tissues (e.g. root, leaves, stems) and organelles (e.g. peroxisome).6,17,32 
Interestingly, increase the concentration of polyamines, spermine and 
spermidine induce NO release, but the actual reaction mechanism still 
not resolved. Polyamines mediated NO production has been thought 
to be involved in root development and embryogenesis33 cadmium 
toxicity34 and drought stress.35 Hydroxylamine mediated NO synthesis 
is also a potent source of NO synthesis while location still unclear. 
Hydroxylamine and Reactive oxygen intermediate is the substrate for 
NO synthesis. According to given hypothesis this pathway involved 
in regulation of ROI concentration, especially during reoxygenation 
of anoxic tissues.

Reductive pathway of no synthesis
Nitrate reductase located in the cytosol, which catalyzes reduction 

of nitrate to nitrite is encoded by two genes in Arabidopsis designated 
nitrate reductase NADH 1 (NIA1) and NIA2 with NIA2encoding the 
enzyme which is responsible for NR activity. This enzyme has also 
potential to catalyze the reduction of nitrite to NO.28,29 Various reports 
provide knowledge in the respect of role for NR in the generation 
of NO in various cellular processes respectively, stomatal closure, 
osmotic stress; the plant defence response and auxin reduced lateral 
root formation.36 A plasma membrane–bound NiNOR activity was 
first described in tobacco, with activity being limited to the roots. 
The nitrite as substrate for NiNOR is probably provided by plasma 
membrane–bound NR in a coupled reaction. This enzyme generates 
extracellular NO and has been suggested to play a role in the sensing 
nitrate availability and during interactions with mycorrhizal fungi. 
Unfortunately, the identity of NiNOR still remains to be determined. 
NO can also be generated by nitrite reduction in the mitochondrial 
inner membrane, probably via cytochrome c oxidase and/or 
reductase.37 However, this only occurs when the oxygen concentration 
drops below 20 mM.29 NAD(P)H provides electrons via ubiquinone 
and the mitochondrial electron transport chain. This process has also 
been reported to produce small amounts of ATP. The peroxisomal 
enzyme xanthine oxidoreductase (XOR) can also reduce nitrite to 
NO. XOR has been shown to reduce nitrite to NO, using NADH or 
xanthine as the reducing substrate. However, this reaction only occurs 
under anaerobic conditions. As peroxisomes are a major site for the 
generation of ROIs, this organelle may provide an important location 
for the interaction of these species with RNIs32 (Figure 2).

( ) ( )2 2L – arginine + NAD P H + O L – citrulline + NAD P + + H O + NO→
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Figure 2 Simplified overview of NO biosynthesis and homeostasis in plant.

Source: Arc et al.42

No signals transduction pathway mechanism 
and function

Numerous genomic and proteomic methods have been 
spontaneously used to explicate meticulously NO dependent processes. 
Principle signal mechanisms convey their bioactivity between covalent 
modification of NO and RNIs with specific atoms of target proteins.38 
The post translation modification process of S–nitrolylation, a redox 
modification of cysteine thiol group by NO exhibit a low pka sulfhydral 
group which supports significant susceptibility to a range of redox 
based post translational modification. The modification of these highly 
reactive Cys residue by NO and related RNIs are reversible except 
for sulfonic acid formation, the most highly oxidized modification 
(Figure 3). An experiment has set up to identify protein is regulated 
by S–nitrosylation in potato tissues. In this experiment, modified 
and optimize biotin switch assay and nano liquid chromatography 
combined with mass spectrometry was applied. This modified method 
provides a new dimension to better understand the signal transduction 
pathway to derive by NO transient signal. The first in planta biological 
function for S–nitrosylaltion emerged through a genetics approach, 
which uncovered a central role for SNOs in plant disease resistance. 
The exogenous addition of NO donors to plant protein extracts also 
demonstrated the in vitro formation of plant SNOs.39 The list of S–
nitrosylated plant proteins are currently growing exponentially 
through the judicious application of the biotin–switch technique. For 
example, proteins specifically S–nitrosylated during plant immune 
function,9 cold treatment, heavy metal exposure and salt stress have 
been described. Unfortunately, current strategies for the identification 
of Cys redox switches on a global scale are not straightforward and 
typically lack sensitivity. However, new techniques are evolving to 
help achieve this.40 Another pressing current limitation in this area is 
the sensitivity of the biotin–switch and associated mass spectrometry 
methodology. In an interesting way, a unique prototype of NOS 
inhibitor was designed, known by Nanoshutter (NSI), which target the 
NADPH site of NOS and produces a specific florescence enhancement 
upon binding to constitutive NOS. The authors proposed that NSI is a 
promising tool with two photon excitation in the 800–9500 nm range 
9.41 S–nitrosylated proteins are being identified at an increasing rate; 
deep insights into how these modifications might regulate protein 
function at the angstrom level are only just beginning to be obtained 
within a plant biology context. A primer for these studies was the 
recent demonstration of how S–nitrosylation of an NADPH oxidase, 

Respiratory burst oxidase homolog D (RBOHD), modulates the 
function of this key enzyme.10 Therefore, increasingly, NO–oriented 
research programs may need to embrace structural biology–based 
approaches.

Figure 3 Modification of proteins by ROS.

Source: Li et al.

Conclusion 
Nitrate reductase located in the cytosol, which catalyzes reduction 

of nitrate to nitrite is encoded by two genes in Arabidopsis designated 
nitrate reductase NADH 1 (NIA1) and NIA2 with NIA2encoding the 
enzyme which is responsible for NR activity.
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