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Nitric oxide: a key driver of signaling in plants

Abstract

The colorless gaseous compound nitric oxide (NO) is a lipophilic free radical that
diffuses readily through the plasma membrane. These attributes make nitric oxide
ideal for a transient paracrine (between adjacent cells) and autocrine (within a single
cell) signaling molecule. The half-life of NO in biological tissues is estimated to be <
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6 Sec. This short half-life reflects the highly reactive nature of NO. It reacts directly

with metal complexes and other radicals and indirectly as a reactive nitrogen oxide
species with DNA, protein, and lipids. NO was first described in 1772 as nitrous air
by Joseph Priestly the English theologian chemist and by co—educators. He was also
the first to describe nitrous oxide (N20O), which he named nitrous air diminished.
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Introduction

Fast forward to the most recent time, NO has been demonstrated to
orchestrate a plethora of physiological function in mammals, was the
subject of the Nobel Prize in 1998 and was named molecule of the year
in 1992 by journal of science. Despite of animal it was first reported
in plant in 1779 by Klepper.! Almost two decades later by the late
1990s, plant biologists had started to pay attention to NO playing role
in plant immunity, initially in potato (Solanum tuberosum)?* and then
two years later in Arabidopsis.*” However the Era is now gathering
substantial momentum. It was undoubtedly an era of great enthusiasm
for NO as a plant signaling molecule and today it is known to play a
crucial role in the regulation of physiological process ranging from
development to adaptation to biotic®'° and abiotic stress.!! Furthering
the application of new tools and technologies to study and addressing
the molecular mechanisms employed by NO to control a variety of key
cellular processes.'>!3 Nitric oxide has a potent skill to encroach on a
noticeable plant world due its enormous owndom like free radical,
small size, no charge, short lived and permeability across biological
membranes. It has also regulated signaling pathway for oxidative
stress, mitochondrial activity, programmed cell death,'*'> growth and
development in plants and responsible for the guidance of markable
spectrum of plant cellular mechanism. The role of NO in plant may
be equally diverse. The participation of NO in plant disease resistance
pathways has been reported on several occasions®®'*!” and role of
NO in the abscisic acid (ABA) signal transduction pathway leading
to stomatal closure has been also demonstrated.'® The last decades,
the role of No in tolerance of abiotic stress has established much
consideration, it has begun to emerge as an important endogenous
signaling molecule in the adaptation of plant to abiotic stress. As it is
evident from the present review, recent progress on NO potentiality
intolerance of plants to environmental stresses has been impressive.!’
These investigations suggest that, NO it possesses antioxidant activity
and might act as a signaling in activating ROI-scavenging enzyme
activities under abiotic stress. NO responses to stress due to salt,
drought, temperature, UV-B and heavy metal, which in their extreme
limit responsible for cause of serious threats and set the plants with
impaired growth, physiological and biological activities that are
witnessed by lost in crop growth and yield etc. This review represents
attention to the description of numerous NO sources, synthesis, the

myriad role of NO and the molecular mechanism underpinning their
function. Nonenzymatic NO production, according to the equation
should occur only at pH below 4.5, since the pKa of nitrous acid is
about 3.2.

2HNO, <>NO+NO_ +H, 0>2NO+20, +H,0

NO is involved in plant metabolism and the nitrification and
denitrification cycle provides NO as a byproduct of nitrous oxide
oxidation into the environment by mean of a non-enzymatic
mechanism.” The studies of NO on plant metabolism date back to
the 1960s when Fewson et al.*! address the recruitment of NO by
microorganisms and higher plants. NO was suggested to be the key
intermediate in the metabolism of inorganic nitrogen compound in
higher plants and nitrogen fixing organisms. It was only in 1994 that
NO was proved to be endogenously produced in a non—enzymatic
way through conversion of nitrogen dioxide to NO by carotenoids in
the light.?> Several plant systems use nitrite as a substrate, according
to the basic reaction.

NO, +¢ + 2H' — NO + H,0

2HNO2 <—>NO+NO2 +H20 > 2NO+202 +H,0

Moreover synthesis of NO on the apoplast has also been described
by a non—enzymatic mechanism, whereby nitrite is converted to NO
under acidic conditions in response to abscisic acid and gibberellins.?
These are also like Cytosolic NR (cNR), A plasma membrane—
bound NR (PM-NR) associated with a PM— nitrite: NO reductase,
Mitochondrial electron transport, Xanthine dehydrogenase/oxidase,
Non—enzymatic NO formation at acidic pH. Nitric oxide is produced
by a group of enzymes called nitric oxide syntheses. These enzymes
convert arginine into citrulline, producing NO in the process. Oxygen
and NADPH are necessary co—factors. >* There are three isoforms of
nitric oxide synthase (NOS) named according to their activity or the
tissue type in which they were first described. The isoforms of NOS are
neuronal NOS (or nNOS), endothelial NOS (or eNOS) and inducible
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NOS (or iNOS).” These enzymes are also sometimes referred to by
number, so that nNOS is known as NOS1, iNOS is known as NOS2
and eNOS is NOS.3.Despite the names of these enzymes, all three
isoforms can be found in a variety of tissues and cell types (Figure 1).
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Source: http://www.reading.ac.uk/nitricoxide/intro/no/synthesis.htm.

Both enzymatic and non—enzymatic pathways have been
described, but there is no consensus in sight on central source of NO
in plant, and even less its regulation. NOS isoform may also present
in the mitochondria, including a constitutive (cmtNOS) and inducible
(imtNOS) mitrochandrial NOS?*?7 which are thought to derive
from cytosolic nNOS and INOS, respectively. Some studies have
failed to locate mtNOS isoform, which could be related to different
experimental designs or methods utilized in the NOS activity assays.
NOS proteins catalyze the NADP—dependent oxidation of arginine
(Arg) to NO and Citrulline. However, genes encoding a structurally
related enzyme have not been identified in higher plants despite the
completion of numerous genome projects. Oxidative mechanisms
include the production of NO from L-arginine (L—-Arg), polyamines
or hydroxylamines. By contrast, reductive routes are dependent upon
nitrite as the primary substrate and include reduction via NADPH
nitrate reductase (NR), a cytosolic enzyme associated with nitrogen
assimilation, whose primary function is the reduction of nitrate
to nitrite® it can further reduce nitrite to NO by the mitochondrial
electron transport—dependent reductase,” Which uses arginine as a
substrate.

Oxidative pathway of no synthesis

There are three different isoforms of the NOS which classify on
their localization Zhou et al.*® All NOS are active as homodimers
converting L—arginine to L—citrulline and NO.

L - arginine + NAD (P) H+0, - L -citrulling + NAD (P) ++H,0+NO

When the availability of L—arginine is reduced, these enzymes also
produce superoxide anion and NO, which may create peroxynitrite.
Also a loss of function mutant, no overproducer 1(nox1) has been
reported to have several fold greater concentration of L—arginine and
this plant line exhibits excessive NO and citrulline accumulation.
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These data therefore imply the existence of a plant NOS like enzyme.
Further, numerous studies in both Arabidopsis and tobacco (Nicotiana
tobacum) have implicated, such NOS like activities as the source of
reactive nitrogen intermediates during the nitrosative burst associated
with the plant immune function.>° A recent paper reported the presence
of NOS in a single celled green algae Osteroccocus tauri. This algae
NOS possessed 45% similarity to human NOS. This enzyme exhibited
NOS activity in vitro and possessed similar property to animal NOS
proteins in the terms of the km for L-arginine (12microM) and
the rate of NADPH oxidation. Unfortunately, these genes to date,
no direct ortholog seem to be present in Arabidopsis and higher
plants.’! In the late 1990s, the palate of available tools to dissect NOS
production was composed by several macrophagic NOS compound
inhibitors such as N®monomethyl L—-arginine (NMMA) and arginine
analogs, and assay for arginine to citrulline conversion were used
to detect the presence of NOS like enzymes in the different plant
tissues (e.g. root, leaves, stems) and organelles (e.g. peroxisome).®!:32
Interestingly, increase the concentration of polyamines, spermine and
spermidine induce NO release, but the actual reaction mechanism still
not resolved. Polyamines mediated NO production has been thought
to be involved in root development and embryogenesis®® cadmium
toxicity** and drought stress.’ Hydroxylamine mediated NO synthesis
is also a potent source of NO synthesis while location still unclear.
Hydroxylamine and Reactive oxygen intermediate is the substrate for
NO synthesis. According to given hypothesis this pathway involved
in regulation of ROI concentration, especially during reoxygenation
of anoxic tissues.

Reductive pathway of no synthesis

Nitrate reductase located in the cytosol, which catalyzes reduction
of nitrate to nitrite is encoded by two genes in Arabidopsis designated
nitrate reductase NADH 1 (NIA1) and NIA2 with NIA2encoding the
enzyme which is responsible for NR activity. This enzyme has also
potential to catalyze the reduction of nitrite to NO.?*?? Various reports
provide knowledge in the respect of role for NR in the generation
of NO in various cellular processes respectively, stomatal closure,
osmotic stress; the plant defence response and auxin reduced lateral
root formation.*® A plasma membrane-bound NiNOR activity was
first described in tobacco, with activity being limited to the roots.
The nitrite as substrate for NINOR is probably provided by plasma
membrane—bound NR in a coupled reaction. This enzyme generates
extracellular NO and has been suggested to play a role in the sensing
nitrate availability and during interactions with mycorrhizal fungi.
Unfortunately, the identity of NiNOR still remains to be determined.
NO can also be generated by nitrite reduction in the mitochondrial
inner membrane, probably via cytochrome c oxidase and/or
reductase.”” However, this only occurs when the oxygen concentration
drops below 20 mM.* NAD(P)H provides electrons via ubiquinone
and the mitochondrial electron transport chain. This process has also
been reported to produce small amounts of ATP. The peroxisomal
enzyme xanthine oxidoreductase (XOR) can also reduce nitrite to
NO. XOR has been shown to reduce nitrite to NO, using NADH or
xanthine as the reducing substrate. However, this reaction only occurs
under anaerobic conditions. As peroxisomes are a major site for the
generation of ROIs, this organelle may provide an important location
for the interaction of these species with RNIs** (Figure 2).
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Figure 2 Simplified overview of NO biosynthesis and homeostasis in plant.

Source:Arc et al.42

No signals transduction pathway mechanism
and function

Numerous genomic and proteomic methods have been
spontaneously used to explicate meticulously NO dependent processes.
Principle signal mechanisms convey their bioactivity between covalent
modification of NO and RNIs with specific atoms of target proteins.*
The post translation modification process of S—nitrolylation, a redox
modification of cysteine thiol group by NO exhibit a low pka sulthydral
group which supports significant susceptibility to a range of redox
based post translational modification. The modification of these highly
reactive Cys residue by NO and related RNIs are reversible except
for sulfonic acid formation, the most highly oxidized modification
(Figure 3). An experiment has set up to identify protein is regulated
by S—nitrosylation in potato tissues. In this experiment, modified
and optimize biotin switch assay and nano liquid chromatography
combined with mass spectrometry was applied. This modified method
provides a new dimension to better understand the signal transduction
pathway to derive by NO transient signal. The first in planta biological
function for S—nitrosylaltion emerged through a genetics approach,
which uncovered a central role for SNOs in plant disease resistance.
The exogenous addition of NO donors to plant protein extracts also
demonstrated the in vitro formation of plant SNOs.* The list of S—
nitrosylated plant proteins are currently growing exponentially
through the judicious application of the biotin—switch technique. For
example, proteins specifically S—nitrosylated during plant immune
function,’ cold treatment, heavy metal exposure and salt stress have
been described. Unfortunately, current strategies for the identification
of Cys redox switches on a global scale are not straightforward and
typically lack sensitivity. However, new techniques are evolving to
help achieve this.*’ Another pressing current limitation in this area is
the sensitivity of the biotin—switch and associated mass spectrometry
methodology. In an interesting way, a unique prototype of NOS
inhibitor was designed, known by Nanoshutter (NSI), which target the
NADPH site of NOS and produces a specific florescence enhancement
upon binding to constitutive NOS. The authors proposed that NSI is a
promising tool with two photon excitation in the 800-9500 nm range
9.4 S—nitrosylated proteins are being identified at an increasing rate;
deep insights into how these modifications might regulate protein
function at the angstrom level are only just beginning to be obtained
within a plant biology context. A primer for these studies was the
recent demonstration of how S—nitrosylation of an NADPH oxidase,
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Respiratory burst oxidase homolog D (RBOHD), modulates the
function of this key enzyme.!® Therefore, increasingly, NO—oriented
research programs may need to embrace structural biology—based

approaches.
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Figure 3 Modification of proteins by ROS.

Source: Li et al.

Conclusion

Nitrate reductase located in the cytosol, which catalyzes reduction
of nitrate to nitrite is encoded by two genes in Arabidopsis designated
nitrate reductase NADH 1 (NIA1) and NIA2 with NIA2encoding the
enzyme which is responsible for NR activity.
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