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Introduction
The concept that involves the use of chemicals to alleviate disease 

date back to the ancient Egypt One of the major significant advances 
in medicine is the development of antibiotics.1 Antibiotics have 
saved many lives and continue to be the main therapy for infections 
related to bacteria. Penicillin G was the first of beta-lactam developed 
which lead the search for the synthesis of additional derivatives. The 
quest gave result to the beta-lactam antibiotics in clinical application 
today.2 the class of broad-spectrum antibiotics that consist of all 
antibiotic agents with beta-lactam ring in their structures is called 
β-lactam antibiotics. It includes penicillin derivatives, monobactams, 
cephalosporin and carbapenems.3

β-lactam antibiotics act by inhibiting the bacterial cell wall 
biosynthesis; they are the most available antibiotics which treat a 
number of bacterial infections. For having a global positive impact on 
health by treating bacterial infections, penicillin and other β-lactam 
antibiotics are arguably considered the most important drugs ever.4 A 
broad spectrum of bacteria can be killed by β-lactams and its toxicity 
to humans is very low this implies that, the resistance to β-lactam 
antibiotics is severe threat,5 bacteria and other infection causing 
microbes are remarkably developed several ways to become resistant 
to antibiotics and other antimicrobial drugs. This is as a result mainly 
of increase use and misuse of the antibiotics in different medical 
illnesses.6 nowadays, about. It was reported that 70% of the bacteria 
causing infections in hospitals are resistant to at one or more of the 
commonly used drug, some bacteria are found to be resistant to 
almost all antibiotics that are approved and can be treated only by 
some drugs that are potentially toxic. There have been reports which 
are documented about the alarming increase in bacterial antibiotic 
resistance which cause community acquired infections, examples 
include the staphylococci and pneumococci which are major causes 
of disease and mortality.7 high prevalence of bacterial resistance to 
various pathogens such as Acinetobacter, Proteus, E.coli, Klebsiella 
and Pseudomonas.8

Accumulate evidence also proved that bacteria could pass 
resistance genes between strains and species. Staphylococci genes of 
antibiotic-resistance are carried on plasmids which will be exchanged 

with enterococcus, bacillus and Streptococcus making it possible for 
acquiring additional genes and gene combinations. Organisms that 
are resistant to treatment with many drugs are known as multiple 
drug resistant.9 Examples of multiple drug resistant organisms 
include: Extended-spectrum beta-lactamases (ESBLs) which show 
resistance to monobactams and cephalosporins. Penicillin-resistant 
Streptococcus pneumonia (PRSP) the enzymes of ESBL are plasmid 
mediated enzymes that have the capability to hydrolyze and inactivate 
a wide variety of beta lactams, including, third generation aztreonam, 
cephalosporins and penicillins.10

β-lactam antibiotic resistance however has become a major 
health care issue. The reactions that involve the cleavage of the 
β-lactam ring of the antibiotic by β-lactamases of bacteria is the 
primary mechanism of β-lactam resistance.11 the cell wall of bacteria 
consists of Peptidoglycan which is a giant polymer of repeated 
chains of disaccharides joined by peptide bridges. The joining results 
from a transpeptidation reaction catalysed by enzymes which are 
inhibited by β-lactams. The enzymes responsible for the assembly 
of peptidoglycan are known as PBPs2 or penicillin-binding proteins. 
They consist of penicillin-binding domain which generally catalyses 
the transpeptidation reaction, but can also act as a endopeptidase or 
carboxypeptidase in some cases Figure 1.12

Figure 1 Some clinically important β-lactams.

Beta-lactam antibiotics
The structures of penicillin consist of a thiazolidine ring connected 

to a beta-lactam ring, which is attached to a side chain. All penicillins 
are derived from 6-Amino-penecillinic acid; the various penicillins 
differ in their side chain structure.
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Abstract

β-lactam antibiotics constitutes a broad class of antibiotic agents that contain β-lactam 
ring in their molecular structure these agents includes cephalosporins, monobactams, 
penicillins and carbapenems. These are the most widely used antibiotics which act by 
inhibiting the synthesis of the bacterial cell wall such activity leads to the lysis and 
death of the bacteria. Due to the wide applications of these antibiotics bacteria have 
developed resistance mechanism against these antibiotics which is usually mediated 
by the enzymes β-lactamases, it hydrolyses β-lactam ring of the β-lactam antibiotics 
rendering it inactive. Recent studies have revealed that the combination of β-lactam 
antibiotics with β-lactamase inhibitors can be used to successfully overcome the effect 
of β-lactamases. This review discussed the mechanism of β-lactam antibiotic activity, 
the mechanisms of β-lactam antibiotic resistance and how to overcome the effect of 
the β-lactamases.
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Penicillins are divided into natural and semi-synthetic ones. Natural 
penicillins are extracted from the cultural solution of penicillia. 
Prototype is penicillin G which is PH sensitive and effective against 
Gram- positive cells susceptible to penicillinase.

Semi-synthetic penicillins are produced by growing penicillium in 
culture so that only the nucleus is synthesised. R group are attached in 
lab or grow penicillium, extract natural penicillin, remove the R group 
and attach wanted R group. This group of penicillins have broader 
spectrum they are effective against Gram- negative cells and they are 
not resistant to Penicillinase. 

The cephalosporins are a class of β-lactam antibiotics originally 
derived from the fungus Acremonium, which was previously known 
as “Cephalosporium”.

Cephalosporins are derivatives of 7-amino-cephalosporanic acids 
and are closely related in structure to Penicillin. They have beta-
lactam ring. They are relatively stable in dilute acid and are highly 
resistant to penicillinase. All cephalosporins are active against 
most Gram-positive cocci, the first generation include cephalothin, 
cefazolin, cephalexin est. they have stronger effect against Gram-
positive bacteria than Gram-negative bacteria, the second generation 
antimicrobial acation against Gram-negative bacteria is increased. The 
third generation has broadest effect against gram-negative and lowest 
activity against Gram-positive bacteria. The fourth generations are 
extended-spectrum agents with similar activity against Gram-positive 
organisms as first-generation cephalosporins, Fourth-generation 
cephalosporins are zwitterions that can penetrate the outer membrane 
of Gram-negative bacteria.13 They also have a greater resistance to 
β-lactamases than the third-generation cephalosporins Figure 2 and 
Figure 3.

Figure 2 Mechanisms of action of β-lactam antibiotics.

The mechanism of action of beta-lactam antibiotics is usually by 
inhibiting the enzyme responsible for the bacterial cell wall synthesis.13 
the stability of cell wall is essential for the shape and protection of the 
cell in hostile and hypertonic environment the cell wall is comprised of 
two alternating units which are the N-acetylmuramic acid (NAM) and 
N-acetyl glucosamine (NAG), these two units are linked together by 
enzyme transglycosidase. Pentapeptide is attached to each NAM unit 
which includes D-alaine-D-alanine. The cross-link between the two 
Dalanine of two NAM is catalysed by PBP. The cross-linked between 
the adjacent glycans gives the rigidity of the cell wall.14,15 The ring 
of beta-lactams antibiotics is similar to the pentapeptide’s D-alaine-

D-alanine of N-acetylmuramic acid, because of this similarity the 
penicillin binding proteins uses beta-lactam as building blocks for the 
synthesis of cell wall instead of NAM Pentapeptide.16 This result in 
the acylation of the enzyme PBP subsequently rendering the enzyme 
incapable of catalyzing further transpeptidation reactions.17 when this 
reaction comes to a halt, Peptidoglycans autolysis commence which 
result to the compromises of the integrity of the cell wall and increase 
its permeability .thus the beta-lactam mediated activity (inhibition) 
causes the lyses of the cell and the death of the bacteria.18

Figure 3 Mechanism of action of β-lactam.

Physiological analysis of β-lactam effect 

It was discovered by Gardner that bacteria forms filaments when 
treated with low concentration of penicillin.19 this discovery support 
early investigation which indicated that penicillin interferes with the 
maintenance of the cell shape of the cell. Results from subsequent 
studies by Duguid using different concentration of penicillin proved 
the interference of penicillin in cell division and maintenance of the 
integrity of the bacterial cell.20

Biochemical analysis of β-lactam effect

Park and Johnson gave the first biochemical clue about the 
penicillin action site.21,22 they observed the accumulation of novel 
uridine peptides in the cytoplasm of S. aureus after being treated 
with penicillin. Subsequent investigation by Park and Stominger 
revealed that the amino acids and sugars of the accumulated peptides 
were similar to those of the cell wall of bacteria. This observation 
suggested that the accumulated uridine peptides in the cytoplasm were 
the precursors of cell wall accumulated as a result of inhibition of cell 
wall biosynthesis by penicillin.23

Biophysical analysis of β-lactam effect

In 1949, radioactive penicillin was used to study the specific site of 
action on the cell wall of bacteria.24‒27 it was observed that penicillin 
bind to a target which was termed penicillin binding component PBC 
and the complex formed was penicillin-PBC complex.25 penicillin 
binds to its target via covalent bond. The complex was subjected to 
SDS-PAGE and the PBC resolved into various proteins of molecular 
weight that ranges between 40-90 KDa.28 these proteins were 
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termed PBPs and were given numbers according to their descending 
molecular weight. The concentration of the proteins, their numbers, 
molecular weight and sensitivity to β-lactam antibiotics varies from 
one specie to another.29

Genetic analysis

PBP1 functions involve the elongation of the cell wall. PBP1-
cephaloridine is an agent that act against PBP1 resulting in the 
inhibition of cell wall elongation.30 There are two distinct components 
of PBP1 which are PBP1a and PBP1b. PBP1a gene was mapped to 
MrcA or ponA. Mutant strain lacking ponA/MrcA appeared to grow 
normally but show slow rate of β-lactam induced lysis.31 PBP1a 
catalysis the polymerization of glycan subunits.32 while PBP1b is 
responsible for transglycosylase and DD-transpeptidase enzymatic 
reaction.33,34

PBP2 was the first to be discovered due to its ability to specifically 
bind with mecillinam.35 its binding with mecillinam causes changes in 
E.coli shape from rod to ovoid.36 PBP2 is the major protein involves 
in the maintenance of cell shape; its inhibition by β-lactams can cause 
destruction of the cell shape and inhibition of division.37‒38

PBP3 – mutant E.coli strains lacking PBP3 proteins when isolated 
and cultured at temperature of 30ºC.35 appeared slightly longer than 
the parental strain. At an increase restrictive temperature to 42ºC cell 
division ceased but, there was continuous increase in cell density. This 
suggested that DNA replication and cell growth were not affected in 
the absence of PBP3 at restrictive temperature. It also proves that 
PBP3 it is essential cell division protein.39 Other Supporting evidence 
for its vital role in cell division came from the use of piperacillin, 
PBP3- specific β-lactam antibiotics and, furazlocillin.40 

PBP4–strains of E.coli lacking the penicillin- sensitive activities 
of DD-endopeptidase and DD-carboxypeptidase1b showed a loss 
of PBP4.41,42 This mutation was mapped and the gene was located at 
68min on the E. coli map which is dacB gene.42 However, the PBP4 
overexpression showed an increase in DD-endopeptidase and DD-
carboxypeptidase, which has no effect transpeptidation reaction.43 
PBP4 was demonstrated as the only PBP of E. coli that possessed 
DD-endopeptidase activity.44

PBP5 membrane-bound proteins which catalyzes a transpeptidase 
reaction and have a weak penicillinase activity.45 the gene which is 
encoding PBP5 was mapped to dacA.46 

PBP6–the gene that encode for this protein is the dacC shares up 
to 62% sequence with PBP5.47 PBP6 and PBP5 catalyze identical 
reactions but, PBP5 shows higher specific activity than PBP6 toward 
uncross-linked peptidoglycan.48 Deletion of dacC had no effect on 
cell morphology and growth rate.49 However, strains lacking PBP6 
showed a very slight increase in antibiotic sensitivity.49 

PBP7 and PBP8 these are characterized more recently than the 
other PBPs. PBP8 is a product of PBP7 as result of OmpT proteolytic 
reaction.50 PBP8 increased expression is usually associated with the 
increased ceftazidime and cephaloridine resistance.51 Both PBP7 and 
PBP8 are soluble periplasmic proteins that are peripherally associated 
with the membrane. Encoding gene of was narrowed to 47.8 and 
48min on the E. coli chromosome and pbpG encode for PBP7.52

Resistance to β-lactam activity
There are four major ways bacteria avoid the 
bactericidal effect of beta-lactams

Altered Penicillin-binding proteins that exhibit relatively low 

affinity toward beta-lactam antibiotics some examples are the PBP 
2_(PBP2a) of Staphylococcus aureus and PBP 2x of Streptococcus 
pneumoniae.53 penicillins are unable to inactivate these PBPs because 
they are relatively resistant to it and they can assume the functions of 
other PBPs after their deactivation. Diminished or completely lack 
of expression of outer membrane proteins (OMP) in gram-negative 
bacteria. In order to acquire access to PBPs, beta-lactam have move 
through porin channels in the outer membrane, decrease expression 
of OMPs limits the of certain beta-lactams from entry into the 
periplasmic space of gram-negative bacteria, therefore restrict its 
access to PBPs on the inner membrane. Resistance to Imipenem in 
Klebsiella pneumoniae and Pseudomonas aeruginosa can arise from 
the loss of OmpK36 and OMP D2, respectively.54‒56 It was reported 
that the resistance to meropenem and Imipenem in some isolate of 
multidrug resistant Acinetobacter baumannii to is associated with 
the loss of the CarO OMP.57,58 insertion of some sequence to porin 
encoding genes or its mutation can lead to the production of proteins 
with reduce functions and subsequently decrease the diffusion of 
beta-lactam into the cell.59 it is believed that the destruction of porin 
alone is not sufficient enough for acquiring resistance phenotype. 
This mechanism is usually coupled with the expression of beta-
lactamases.59,60

Efflux pumps it is a part of intrinsic resistance or acquired 
resistance phenotype. Efflux pumps have the capability to export 
various substrates from the periplasmic part of the cell to the 
surrounding environment.61 these pumps are the determinant of 
multidrug resistance in various Gram-negative bacteria especially 
P. aeruginosa. The decrease in the organism outer membrane 
permeability in combination with the upregulation of the mexA-
mexB-OprD can contribute to decreased susceptibility to various beta-
lactam antibiotics including Cephalosporin, penicillin, tetracycline, 
quinolones and Chloramphenicol.62‒65 

Beta-lactamases Production Bacteria produce enzymes known as 
Beta-lactamases that hydrolyze the beta-lactam ring subsequently the 
beta-lactam antibiotic is rendered inactive before it get to the PBP 
target. because of the structural relation that beta-lactamases shares 
with PBP, it bind, acylate and also use water molecules to hydrolyze 
and inactivate beta-lactam share with PBPs allows these enzymes 
to bind, acylate, and use a strategically located water molecule to 
hydrolyze and thereby inactivate the beta-lactam.66 in gram-negative 
bacteria the most important resistance mechanism is the inactivation 
of beta-lactams by beta-lactamases. It has been reported that there are 
over 530 beta-lactamase enzymes (K. Bush, 9th International Congress 
on beta-Lactamases, Leonessa, Italy). beta-lactamases contains either 
serine residue or metal ion In their active site, betalactamases with a 
serine residue (Ambler classes A, C, D) and metal ion Zn2+ (Ambler 
class B) that attack beta-lactam ring and break the amide bond in the 
ring Figure 4.67‒69

Figure 4 Mechanism of beta-lactam resistance.

Serine β-lactamases have serine as an active-site which is used 
to hydrolyze the ring of β-lactam in β-lactam antibiotics. The serine 
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β-lactamases are classified based on sequence similarity into three 
classes, A, C, and D.70‒72 which are all related to the DD peptidases.73

Amber class A

This class was first observed in E.coli in 1963 and was termed 
TEM; it was named after the person from whom it was isolated. This 
class of enzyme exhibit a level of susceptibility to many commercially 
available β-lactamase inhibitors like Clavulante, Sulbactam and 
Tazobactam.74,75 other members of this class including VH5, PER 
and SHV were also reported.76 SHV-1 and TEM-1 have almost 68% 
sequence homology and can be found in E.coli, K. Pneumoniae and 
other pathogens responsible for various infections. TEM-t and SHV-1 
confers resistance to Ampicillin and Piperacillin.77 

Ambler class B

These enzymes contain an enzymes a small number Zn2+ this 
class one of the atoms of Zinc in inactivation cephalosporins and 
penicillins of are MBLs that use one of two zinc (Zn2+) atoms for 
inactivating penicillins and cephalosporins. However, their activity 
can be inhibited by chelating agents (EDTA) but not by sulfones or 
clavulanic acid. IMP-1 was the first to be discovered in this class form 
P. aeruginosa. Varieties of genetic element such as plasmid, integron 
were found to have the bla genes encoding.78

Ambler class C 

Enzymes in this class are active against cephalosporins, therefore 
sometimes called cephalosporinases.79 their genes are encoded in the 
chromosome and are mostly synthesized by Gram-negative bacteria. 
The sequences of these enzymes that are known are highly conserved.80 
The cephalosporin-hydrolyzing chromosomal β-lactamase of his class 
in P. aeruginosa are encoded by ampC (PA4110), which was cloned 
and sequenced.81

Amber class D

The enzymes in this class are capable of degrading isoxazolyl 
β-lactams like methnicillin and oxacillin. Thus they are also called 
oxacillinases.82 however their activity is inhibited by clavulanic acid.83

Overcoming β-lactamases
There are basically two ways to overcome the effect of hydrolytic 

activity of beta-lactamases. The first principle involves getting 
molecules that inactivate or inhibit beta-lactamases. Sulbactam, 
clavulanic acid and tazobactam-lactamase are the three inhibitors 
that are used in the clinical application. All of these three compounds 
share similar structures with penicillin. Some of the features of these 
compounds include high affinity for β-lactamases, each of these 
compounds occupies the active site relatively longer than β-lactams 
and undergoes different reaction chemistry and they are also poorly 
hydrolyzed by the enzyme.84‒86 therefore, β-lactamase inhibitors 
are also called “suicide inhibitors” because they get trapped by the 
beta-lactamase. This phenomenon has been the subject of research 
by academic laboratories and some pharmaceutical companies.87‒93 
synthesis of compounds by substituted sulfones, cephem and penem 
gives optimism that new inhibitors of β-lactamase will be found.94 
The Recent research studies that are being carried out to elucidate 
the mechanistic details of beta-lactamase inhibition of deacylation-
deficient beta-lactamases will surely advance the knowledge of the 
chemistry of inactivation.95

The second principle involves getting a new beta-lactam antibiotic 
that possesses great affinity for the β-lactamases and cannot be 

hydrolyzed by the PBP, or poorly hydrolyzed by it. This has been 
the original rationale behind extended-spectrum carbapenems or 
cephalosporins. Common example of this principle is the development 
of compounds such as doripenem and ceftobiprol. Ceftobiprole is an 
“anti-MRSA cephalosporin” which demonstrates very high affinity 
for PBP2, it is active against gram-negative bacteria possessing 
betalactamases and resistant to penicillinase of S. aureus and is.96 
Doripenem is a modified carbapenem with sulfamoylaminomethyl 
substituted pyrrolidylthio group at the C2 position and 1-beta-methyl 
group, which shows very high activity against Acinetobacter spp, P. 
aeruginosa and Burkholderia cepacia. 97

Sulbactam

Sulbactam known as a semi synthetic substance capable of 
inactivating β-lactamases though it is not as potent as Clavulanic 
acid it shows high activity against class ii-iv and displays relatively 
low action against class1β-lactamase. The combination of sulbactam 
with some antibiotics tends to increase their activity against antibiotic 
resistant bacteria for example; the antibacterial activity of ampicillin 
will be extended and becomes more effective when it is combining 
with sulbactam. A compound was developed containing sulbactam-
ampicillin known as sultamicillin was found clinically effective in 
treatment of various infections such as those of skin and soft tissues as 
well as many other infections. it was also reported that a single dose of 
ampicillin-sulbactam administered intra-muscularly with probenecid 
had therapeutic effect against infections of neisseria gonorrhae which 
is an ampicillin resistant.98

Tazobactam

Piperacillin combined with tazobactam was first prepared in 
1993 in the United state. piperacillin is known to have antibiotic 
activity against gram-negative and gram-positive as well as aerobes 
and anaerobes.99 piperacillin-tazobactam combination act as a good 
β-lactamase inhibitor with broad spectrum of antibacterial activity in 
both gram-negative and gram-positive bacteria. But such combination 
has no inhibition effect against isolates of gram-negative bacillus 
having AmpC β-lactamase. Piperacillin-tazobactam combination is 
reported to be effective for treatment of various infections including 
intra-abdominal infections.100

Clavulanic acid

Ticarcillin-clavulanate was the first combination β-lactam 
β-lactamase inhibitor developed in 1985 for parenteral administration. 
It increases the inhibitory activity against -lactamase-producing 
staphylococci, Proteus spp, H. influenzae, Pseudomonas spp, 
Klebsiella spp Providencia, and E. coli.101 the combination of 
amoxicillin to clavulanic acid increases the organism susceptibility 
to amoxicillin like amoxicillin resistant Haemoehilus influenza and 
Neisseria gonorrhea.102

Conclusion
Since b-lactam antibiotics introduction into clinical field more 

than 60years ago, beta-lactam antibiotics have been the major 
source of antimicrobial therapy. The mechanism of action of beta-
lactam antibiotics is usually by inhibiting the enzyme responsible for 
the bacterial cell wall synthesis subsequently resulting in the lysis 
and death of the bacteria. Unfortunately, bacteria have developed 
resistance to β-lactam antibiotics through a defense mechanisms to 
protect themselves against the effect of the antibiotics by Altered 
Penicillin-binding proteins that exhibit relatively low affinity toward 
beta-lactam antibiotics, diminished or completely lack of expression 
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of outer membrane proteins (OMP) in gram-negative bacteria, 
Efflux pumps it is a part of intrinsic resistance or acquired resistance 
phenotype and by beta-lactamases Production which plays the major 
role in resistance mechanism by hydrolyzing the beta-lactam ring 
subsequently the beta-lactam antibiotic is rendered inactive before it 
get to the PBP target. This review have shown how the β-lactamase 
activity can be overcome which is by two principles, the first involves 
getting molecules that inactivate or inhibit beta-lactamases. molecules 
like sulbactam, clavulanic acid and tazobactam .the second principles 
involves getting a new beta-lactam antibiotic that possesses great 
affinity for the β-lactamases and cannot be hydrolyzed by or poorly 
hydrolyzed by β-lactamases. 
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