

Anti-nutritional factors in safflower (*Carthamus tinctorius* L) seeds and their pharmaceutical applications

Abstract

Anti-nutritional factors (ANFs) present in human or animal foods generally reduce nutrient utilization thereby contributing impaired metabolic performance. Several ANFs have been reported for their negative effect on the performance and survival of monogastric animals. However, some ANFs and their break down products present in small amount may possess beneficial health effects. In oilseed crops, fewer concentrations of ANFs like glycosides, tannins present in the seed/seed coat are responsible for the characteristic astringent or bitter taste and not individually preferred as fodder due to the presence of ANFs like phenolic glucoside in their seeds and seed meals. Appropriate processing techniques help to reduce the adverse effects of these ANFs and thereby improve their nutritive value. ANFs in safflower seeds and their well-organized extraction techniques may add a positive approach in medical science for their further applications in pharmaceutical industries. This review summarizes related concern of this important oilseed crop.

Keywords: Safflower, anti-nutritional factors, pharmaceutical role, processing methods

Introduction

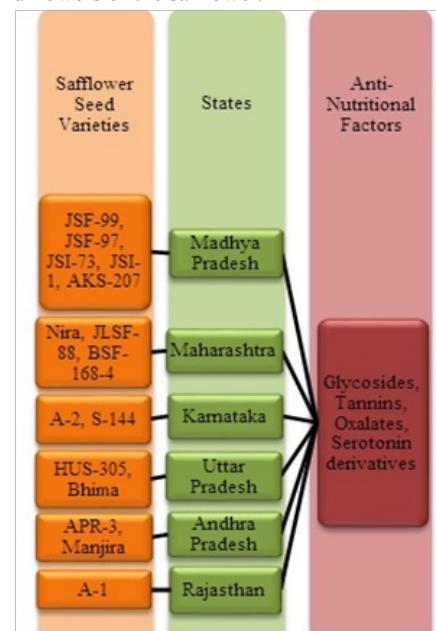
Antinutritional factors (ANFs) have been the chemical compounds, frequently but not exclusively associated with foods and feeding stuff. They have been commonly known as secondary metabolites in plants and proved to be highly biological active compounds. Oilseeds have used for different purpose as food, animal feed, industrial raw material and for medical uses. The presence of ANFs in plants combined with protein sources and reduces their full utilization for livestock feeding and reduced the nutrient utilization through food intake.¹ Generally, these toxic factors found in plants for variety of reasons as a part of their protection against attack by herbivorous, insects and pathogens or as means to survive in adverse growing conditions.

In Asteraceae family, *Carthamus tinctorius* L. commonly called as safflower has been the ancient oilseeds Rabi crop. The cultivated safflower (*C. tinctorius*) was believed to be originated from the wild varieties of *C. lanatus* and *C. oxyacantha*.^{1,2} Safflower as a versatile crop, famous for its flowers and seeds (oil) and known for the diversified uses.^{3,4} Safflower oil comprised of approximately 75% linoleic acid acids, 13% oleic acid and 8% saturated fatty acids and remaining 4% constitutes vitamin E, omega-3 and omega-6 fatty acid. In India, Maharashtra has been the leader in terms of acreage and production of safflower followed by Karnataka, Andhra Pradesh, Madhya Pradesh, Uttar Pradesh and Rajasthan. These states produced the most popular seed varieties like Nira, JLSF-88, A-2, APR-3, AKS-207, HUS-305 including A-1 and PBNS-12 as a national check. Figure 1 demonstrated the presence of major ANFs in these seed varieties according to their states.

In safflower, ANFs have been present in the form of Tannins, Oxalates, Luteolin, Acacetin, Glycosides and Serotonin derivatives. They reduced the availability of nutrients and cause growth inhibition if taken up by the humans. Phenolics, polysaccharides, flavonoids, alkaloids, lignans, steroids, carboxylic acids, quinonochalcone C-glycosides and quinone-containing chalcones have been the chemical groups isolated from safflower seeds other than the ANFs.⁵⁻¹¹

Volume 3 Issue 2 - 2019

Gauri Singhal,¹ Priyanka Singh,¹ Sameer Suresh Bhagyawant,² Nidhi Srivastava¹


¹Department of Bioscience and Biotechnology, Banasthali University, India

²School of Studies in Biotechnology, Jiwaji University, India

Correspondence: Nidhi Srivastava, Associate Professor, Department of Bioscience and Biotechnology, Banasthali University, India, Tel +91 8741914247, Email nidhiscientist@gmail.com

Received: August 07, 2018 | **Published:** April 01, 2019

Lignan glycosides and triterpenoid saponins were also reported from the seeds and flowers of the safflower.^{12,13}

Figure 1 Safflower seeds varieties of Indian states and their antinutritional factors.

The aim of current review is to emphasize the ANFs types present in safflower seeds and their processing techniques with highlighted pharmacological and other industrial applications.

Effects of anti-nutritional factors

ANFs have widely distributed in the oilseeds, consumed in the form of diet and may cause severe effects as cyanogenic glycosides can cause dysfunction of the central nervous system, respiratory failure and cardiac arrest. Lectins can adversely affect our body by

directly binding to the intestinal mucosa interacting with enterocytes and interfering with absorption and transportation of nutrients during digestion and causing epithelial lesions.

Phytates bound to the minerals like calcium, iron, magnesium and zinc and made them unavailable for the absorption. Anemia and other mineral deficiency disorders have common in regions where the diet has been primarily a vegetarian. Oxalate inhibited calcium absorption and increase the risk of developing kidney stone. Tannins bound to proteins and thereby reduced the nutritional quality. They combined with digestive enzymes thereby making them unavailable for digestion. They also decreased palatability and reduced growth rate.¹⁴

Besides negative impacts, these ANFs can also play a positive role when isolated and purified from their plant parts. These factors have an effect on gastrointestinal tract and affect the microflora count of the intestine by promoting the growth of beneficial bacteria. *Lupinus campestris* seeds have anti-mutagenic activity and prevent the mutagenic process involved in development of cancer. ANFs i.e. plant lectins decreased the levels of heat shock protein 70 and 90 in gut epithelial cells. Lectins present in legumes assessed to act as a mucosal adjuvant.¹⁵⁻¹⁸

ANFs restricted the use of safflower seeds and their broad beneficial effects. After their consumption, they showed deleterious effect on growth and health of humans or animals. So, the awareness of various anti-nutritional factors present in safflower seeds and their proper utilization has very essential for health and well beings of the population.

Processing methods

A significant human population has been relying on the safflower seeds for multipurpose uses. Though ANFs present in safflower seeds, their meal or other parts of this crop reduce its palatable quality, the nutraceutical potential of safflower seeds have been hindered and make it less choice of animal feed too. Processing methodologies have been commonly used for the improvement of oilseeds to maintain their edibility for human. The isolation and proper processing of these ANFs contribute a leading role in pharmaceutical science.

Heating methods including roasting and boiling method have been the traditional method of processing. Roasting method has been used for the induction of typical colour development, flavour and taste of oil. In addition, it changed the chemical composition and modified the nutritional value as well as antinutrient content of the seeds.¹⁹ Boiling method has been conducted at the high temperature through which ANFs have been drained out in the water. It has also been used to reduce the ANFs like phytate and tannin contents of the sample.

Radiation has also been used for the reduction of ANFs content and has one among the traditional processing methods. Microwave method has been mainly used in the food technology to increase the oil extraction by providing a potential to induce the stress. It has been widely employed for the isolation of ANFs from plants and seeds.²⁰

Processing through enzymes has been the most important method in reduction of ANFs as they digested the complex cell walls of seeds. Enzymes enhanced the extraction and separation processes to eliminate toxic and anti-nutritional factors.²¹

Fermentation has been one of the advance processing methods. In this method, seeds have been fermented using *Bacillus subtilis*,

Lactobacillus gasseri and other microbial strains in the medium. ANFs including phenolic compounds and phytosterols have been separated through this process. Besides these processing methods, leaching or solubilization into cooking medium has also been used for the degradation of these constituents by heat.^{22,23} in 2018 as well as Bulbula and Urga in 2018 reported that a significant amount of phytate and tannin were reduced after germination and fermentation pretreatment. They also reported that there was a considerable reduction in glycosides after pretreatment with fermentation than germination.

The amount of phytate has been reported to decrease after soaking seeds in water and mineral salt solution for 12 hours and subsequently the amount of saponins are reduced by sprouting method for 60 hours. Soaking and germination pretreatment of the seeds partly removed the concentration of the trypsin inhibitor while heat pretreatment mostly eliminated it.²⁴ A variety of traditional household methods to industrial scale processing methods have shown in Table 1.

Table 1 Processing method of ANFs present in safflower seeds

S. No.	ANFs	Processing method	References
1	Tannins	Cooking, Extrusion, Autoclaving, Microwave and Roasting	Alonso et al. 2000; Enechi and Odonwodu 2003
2	Flavonoid	Microwave, Ultrasound Wave	Wang et al. 2014; Wei et al. 2016
3	Serotonin derivatives	Ultrasonic Wave, Reflux method	Seo and Choi 2009
4	Glycosides	Boiling, Fermentation, Autoclave, Soaking	Markus et al. 2014

Anti-nutritional factors with pharmaceutical applications

Proper standardized purification of ANFs presents in safflower seeds make it people choice for various medical and pharmaceutical applications. At low levels, few ANFs have been reported to reduce the blood glucose, insulin responses to starchy foods and the percentage of plasma cholesterol and triglycerides as well as cancer risks. At their high concentration, they cause the adverse physiological effect. So, here we discuss the pharmaceutical role of different ANFs present in safflower seeds as summarized in Figure 2.

Safflower seeds have been enriched with phenolic compounds like N-feruloylserotonin-5-O- β -D-glucoside, 8-hydroxyarctigenin-4-O- β -D-glucoside, leutolin-7-O- β -D-glucoside, N-feruloylserotonin, which have been quantified using HPLC technique. Recently much attention has been given to these compounds due to their variety of biological actions as anti-oxidation, anti-inflammation, anti-cancer and anti-aging and act as therapeutic potential against several diseases.^{5,25-27} One study showed that in estrogen deficient rats with inhibition of melanin synthesis, phenolic compounds extracted from safflower seed increased the level of plasma high density lipoprotein (HDL) cholesterol and also stimulate bone formation.²⁸

Tannins a major part of astringent; bitter seeds polyphenols, located mainly between the outer integument and the aleuronic layer. They have been associated with the preservation of plant dormancy and have bactericidal and allopathic properties. They showed the highest anti-oxidant properties.²⁹ Tannins have been actively used in pharmaceutical industry as antidiarrheal, haemostatic, and anti-hemorrhoidal compounds. They have not only used for healing burns and halting bleeding, also terminate infections while continue to heal

the wound internally. They can also cause regression of tumors that have already presented in tissue.³⁰

Serotonin derivatives like N-(p-coumaroyl) serotonin (CS) and N-feruloyl serotonin (FS) have shown *in vitro* and *in vivo* anti-oxidant effects. These two serotonin derivatives were recognized as the main and unique phenolic constituents of defatted safflower seeds.^{27,31} Some activities of these derivatives have been already reported including free radical-scavenging and antibacterial characteristic. They also inhibited the production of pro-inflammatory cytokines, showed anti-oxidative activity on plasma and liver, inhibited LDL oxidation in apoE-deficient mice, increased the proliferation of fibroblasts and showed advantageous effects against cardiovascular risk in healthy human volunteers.^{26,31-35}

Luteolin has been the natural flavonoid present in the safflower seeds. It has been commonly used in the traditional medicine to treat a wide range of diseases. It showed different pharmacological and biological activities like anti-oxidative properties, neuroprotection, anti-diabetic, antihypertensive and cancer prevention effects.³⁶⁻⁴⁰ Similarly, Acacetin, another category of flavonoid has an atrium-selective mediator which, without extending the corrected QT interval, increased the atrial refractory period. They have been extensively distributed in a variety of plants of various families but reported mainly in Asteraceae family. Acacetin have several pharmacological properties like anti-inflammatory, anti-oxidation, blood vessel expansion, arrhythmia inhibition, antiplatelet aggregation and antitumor activities connected with cardiovascular protection.⁴¹⁻⁴⁴

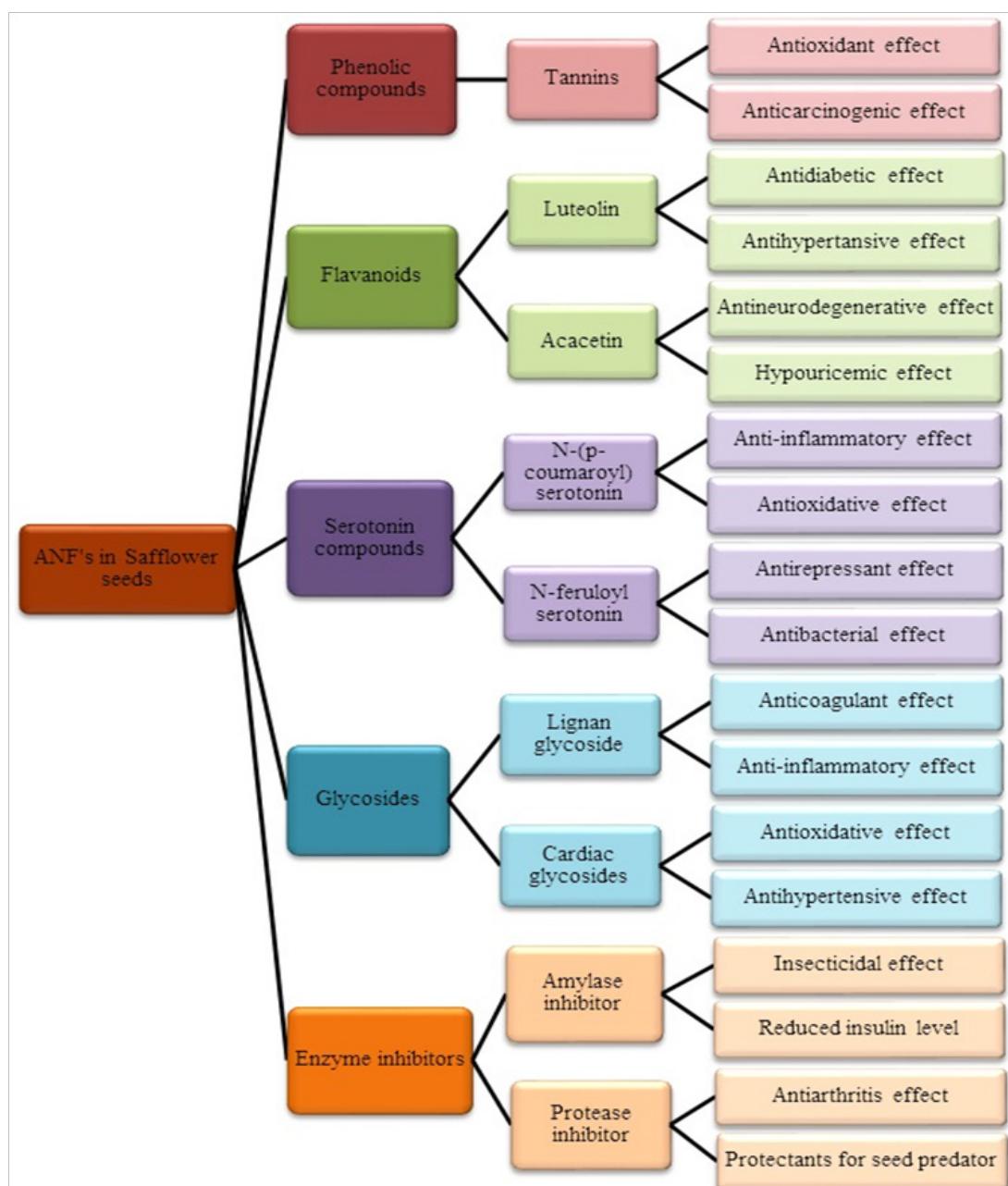


Figure 2 ANFs present in safflower seeds and their pharmaceutical activities.

Estrogen analogs as antagonists have been tremendously used in clinical application of anti-estrogens for treating breast cancer. Safflower seeds rich in lignan glycoside, tracheloside have been reported as an anti-estrogen against cultured Ishikawa cells through bioassay-linked HPLC-ELSD.¹³ As an antioxidant, their positive effect on reducing the risk of hormone-dependent cancer has also been recently demonstrated.^{45,46} Similarly, C-glycosides i.e. Quinocchalcone present in safflower has been found to show anticoagulant, anti-inflammatory, antioxidant, hepatoprotective, antihypertensive, anti-tumouric and anti-diabetic properties.⁴⁷

ANFs present in safflower seeds and their removal by biotechnological approach may minimize adverse biological effects though on the other hand these ANFs may actively participate in pharmaceutical industries. These anti-nutrients might not always harmful even though lack of nutritive value. Despite of this, the balance between beneficial and hazardous effects of anti-nutrients rely on their concentration, chemical structure, time of exposure and interaction with other dietary components. Finally, knowledge regarding various techniques to lower down or reduce the ANFs content in safflower seeds is needed for their positive approach in health and well-being of the population.⁴⁸

Acknowledgment

The authors are thankful to Prof. Aditya Shastri, Hon. Vice Chancellor, Banasthali University, for his support and encouragement. We also thank the authorities of Banasthali University for providing necessary facilities to conduct this study.

Conflicts of interest

Authors declare no conflict of interest.

References

- Osagie AU. National Quality of Plant Foods. *AGRIS*. 1998.
- Knowles PF, Schank SC. Artificial hybrids of *Carthamus nitidus* Boiss. and *C. tinctorius* L. (Compositae). *Crop sci*. 1964;4:596–599.
- Weiss EA. Castor, sesame and safflower. *Barnes & Noble*. 1971.
- Furuya T, Orihara Y, Hayashi C. Triterpenoids from *Eucalyptus perriniana* cultured cells. *Phytochemistry*. 1987;26:715–719.
- Kang GH, Chang EJ, Choi SW. Antioxidative activity of phenolic compounds in roasted safflower seeds. *J Korean Soc Food Sci Nutri*. 1999;4:221–225.
- Hattori M, Huang XL, Che QM, et al. 6-hydroxykaempferol and its glycosides from *Carthamus tinctorius* petals. *Phytochemistry*. 1992;31:4001–4004.
- Li F, He ZS, Ye Y. Flavonoids from *Carthamus tinctorius*. *Chin J Chem*. 2002;20:699–702.
- Nagatsu A, Zhang HL, Watanabe T, et al. New steroid and matairesinol glycosides from safflower (*Carthamus tinctorius* L.) oil cake. *Chem Pharma Bull*. 1988;46:1044–1047.
- Roh JS, Han JY, Kim JH, et al. Inhibitory effects of active compounds isolated from safflower (*Carthamus tinctorius* L.) seeds for melanogenesis. *Biol Pharma Bull*. 2004;27:1976–1978.
- Sadao S, Yoshihiko T, Satomi K, et al. Conjugated serotoninins and phenolic constituents in safflower seed (*Carthamus tinctorius* L.). *Agri Biol Chem*. 1980;44:2951–2954.
- Sato H, Kawagishi H, Nishimura T, et al. Serotobenine, a novel phenolic amide from safflower seeds (*Carthamus tinctorius* L.). *Agri Biol Chem*. 1985;49:2969–2974.
- Yadava RN, Chakravarti N. Anti-inflammatory activity of a new triterpenoid saponin from *Carthamus tinctorius* linn. *J Enz Inhib Med Chem*. 2008;23:543–548.
- Yoo HH, Park JH, Kwon SW. An Anti-Estrogenic Lignan Glycoside, Tracheloside, from Seeds of *Carthamus tinctorius*. *Biosci Biotechnol Biochem*. 2006;70:2783–2785.
- Kiranmay P. Is a bio active compound in plants acts as antinutritonal factors. *Inter J Curr Pharma Res*. 2014;6:36–38.
- Price KR, Johnson IT, Fenwick GR. The chemistry and biological significance of saponins in foods and feeding stuffs. *Crit Rev Food Sci Nutri*. 1987;26:27–135.
- Jansman AJM, Hill GD, Van DP. Effects of soya trypsin inhibitors on faecal nutrient digestibility and nitrogen retention in young piglets. *Wageningen*. 1998;331–334.
- Friedman M. Nutritional and health benefits of soy proteins. *J Agri Food Chem*. 2001;49:1069–1086.
- Young VR. Soy proteins in relation to human protein and amino acids nutrition. *J Am Diet Assoc*. 2011;91:828–835.
- Ozdemir M, Devres O. Analysis of colour development during roasting of hazelnuts using response surface methodology. *J Food Eng*. 2000;45:17–24.
- Self R. Extraction of organic analytes from foods. In: A manual of methods. *Royal Society of Chemistry*. 2005:1–43.
- Kalia VC, Rashmi Lal S. Using enzymes for oil recovery from edible seeds. *J Sci Indus Res*. 2001;60:298–310.
- Mariod AA, Ahmed SY, Abdel wahab SI, et al. Effects of roasting and boiling on the chemical composition, amino acids and oil stability of safflower seeds. *J Food Sci Technol*. 2012;47:1737–1743.
- Ojha P, Adhikari R, Karki R, et al. Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. *Food Sci Nutri*. 2018;6:47–53.
- Khokhar S, Chauhan BM. Antinutritional factors in Moth Bean (*Vigna aconitifolia*): Varietal differences and effects of methods of domestic processing and cooking. *Food Chem*. 1997;59:367–371.
- Bae SJ, Shim SM, Park YJ, et al. Cytotoxicity of phenolic compounds isolated from seeds of safflower (*Carthamus tinctorius* L.) on cancer cell lines. *Food Sci Biotechnol*. 2002;11:140–146.
- Cho SH, Lee HR, Kim TH, et al. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high-cholesterol diets. *J Nutri Sci Vitaminol*. 2004;50:32–37.
- Zhang HL, Nagatsu S, Watanabe T, et al. Antioxidative compounds isolated from safflower (*Carthamus tinctorius* L.) oil cake. *Chem Pharma Bull*. 1997;45:1910–1914.
- Kim EO, Lee JY, Choi SW. Quantitative changes in phenolic compounds of safflower (*Carthamus tinctorius* L.) seeds during growth and processing. *J Food Sci Nutri*. 2006;11:311–317.
- Cheng HY, Lin CC, Lin TC. Antiherpes simplex virus type 2 activity of casuarinin from the bark of *Terminalia arjuna* Linn. *Antiviral Res*. 2002;55:447–455.
- Stephane Q, Tatiana V, Diana K, et al. Main structural and stereochemical aspects of the antiherpetic activity of nonahydroxyterphenoyl containing C-glycosidic ellagitannins. *Chem Biodiv*. 2004;1:247–258.

31. Koyama N, Kuribayashi K, Seki T, et al. Serotonin derivatives, major safflower (*Carthamus tinctorius L.*) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. *J Agric Food Chem.* 2006;54:4970–4976.
32. Kawashima S, Hayashi M, Takii T, et al. Serotonin derivative, N-(p-coumaroyl) serotonin inhibits the production of TNFa, IL-1a, IL-1b, and IL-6 by endotoxin-stimulated human blood monocytes. *J Inter Cyto Res.* 1998;18:423–428.
33. Koyama N, Suzuki K, Furukawa Y, et al. Effects of safflower seed extract supplementation on oxidation and cardiovascular risk markers in healthy human volunteers. *Brit J Nutri.* 2008;101:568–575.
34. Kumarasamy Y, Middleton M, Reid RG, et al. Biological activity of serotonin conjugates from the seeds of *Centaurea nigra*. *Fitoterapia.* 2003;74:609–612.
35. Watanabe M. Antioxidative phenolic compounds from Japanese barnyard millet (*Echinochloa utilis*) grains. *J Agri Food Chem.* 1999;47:4500–4505.
36. Benavente GO, Castillo J. Update on uses and properties of citrus flavonoids: new finding in anticancer, cardiovascular and antiinflammatory activity. *J Agric Food Chem.* 2008;56:6185–205.
37. Dajas F, Rivera F, Blasina F, et al. Cell culture protection and in vivo neuroprotective capacity of flavonoids. *Neurotox Res.* 2003;5:425–432.
38. Duarte J, Perez PR, Vargas F, et al. Antihypertensive effect of the flavonoid quercetin in spontaneously hypertensive rats. *Braz J Pharmacol.* 2001;133:117–124.
39. Huang YT, Hwang JJ, Lee PP, et al. Huang JH, Huang CJ et al. Effect of luteolin and quercetin, inhibitors of tyrosine kinase on cell growth and metastasis. Associated properties in A431 cells overexpressing epidermal growth factor receptor. *Braz J Pharmacol.* 1999;128:999–1010.
40. Lin CW, Hou WC, Shen SC, et al. Quercetin inhibition of tumor invasion via suppressing PKC /ERK/ AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. *Carcinogenesis.* 2008;29:1807–1815.
41. Chen QH, Li Q, Yang WJ, et al. Related mechanism's research progress of flavonoids against myocardial ischemia-reperfusion injury. *Chin J Clin Pharmacol.* 2013;12:958–960.
42. Chiyomaru T, Yamamura S, Zaman MS, et al. Genistein suppresses prostate cancer growth through inhibition of oncogenic micro RNA-51. *PLoS One.* 2012;7:43812.
43. Guler A, Sahin MA, Yucel O, et al. Proanthocyanidin prevents myocardial ischemic injury in adult rats. *Med Sci Mon.* 2011;17:326–331.
44. Prasad R, Vaid M, Katiyar SK. Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. *PLoS One.* 2012;7:43064.
45. Niemeyer HB, Metzler MJ. Differences in the antioxidant activity of plant and mammalian lignans. *J Food Eng.* 2001;56:255–256.
46. Yamauchi S, Sugahara T, Nakashima Y, et al. Radical and superoxide scavenging activities of matairesinol and oxidized matairesinol. *Biosci Biotechnol Biochem.* 2006;70:1934–1940.
47. Yue S, Tang Y, Li S, et al. Chemical and Biological Properties of Quinocchalcone C-Glycosides from the Florets of *Carthamus tinctorius*. *Molecules.* 2013;18:15220–15254.
48. Knowles PF. Centers of plant diversity and conservation of crop germplasm, Safflower. *Eco Botany.* 1969;23:324–329.