

New evidence suggests link between prion disease and alzheimer's disease

Editorial

Among many neurodegenerative diseases, two have always attracted much attention: prion disease and Alzheimer's disease (AD). Prion disease is named by its unique infectious agent, prion protein (PrP), a mis-folded protein with the ability to transmit its conformation to normally folded counterpart proteins thus to self-propagate. Creutzfeldt-Jakob disease (CJD) is the major form of human prion disease. Most of CJD cases are caused by genetic mutations:¹ sporadic CJD (sCJD) as the result of somatic mutation and familial CJD (fCJD) as the result of an autosomal dominant germline mutation. Some CJD cases are acquired, including iatrogenic CJD (iCJD) resulted from prion-contaminated medical treatments such as transplants of dura matter and human growth hormone derived from human cadavers (c-hGH),² recently emerging variant CJD (vCJD) with bovine prion (from mad cow disease) as a suspected cause, and Kuru among the Fore tribe of Papua New Guinea via funerary cannibalism. The accumulation of the abnormal PrP causes neuronal death and microscopic holes in the brain and gives the brain a sponge-like appearance, therefore CJD is categorized as a type of transmissible spongiform encephalopathy (TSE).³ Eventually, CJD causes deterioration of cognitive, mental, and physical abilities. There is no treatment available to date and the mean survival time is only 5-14months after the onset of the illness.⁴ On the other hand, Alzheimer's disease is the most prevalent cause of dementia in the world's aging populations.⁵ The hallmark of AD pathology is the accumulation of protein aggregates, called plaques, of abnormally folded amyloid-beta (A β) in the extracellular space and intracellular aggregated fibrillary tangles of phosphorylated tau protein. Tau pathology occurs after A β plaques thus is postulated as induced by A β plaques.⁶ The major risk factors of AD include age, apolipoprotein E e4 (APOE) gene (over 60% of AD patients have at least one allele), and sex (60% of AD patients are female).⁷

Recently, three studies showed some connections between the pathologies of the two diseases. Published in September 2015, Jaunmuktane et al.⁸ performed a brain autopsy study with histology and immunoblotting on eight iCJD patients, who received prion-contaminated c-hGH treatment between 1958 and 1985 and deceased in the 20-64 age range with incubation periods of 18.8-30.8years after the last treatment. Surprisingly, in addition to and at locations different from the presence of PrP, in seven of the eight patients, various levels of A β deposits were found in the gray matter of the brain as well as in the blood vessel walls. Next-generation sequencing showed none of them carried APOE; only three carried few possible risk factors but non-causal mutations related to AD, thus genetic causes were ruled out. They compared the A β load in this iCJD group with data from other autopsy studies obtained from patients with other prion diseases and found only the iCJD group exhibited the A β load at such young ages. Following these findings, another study⁹ published in January 2016 confirmed the results. Using immunocytochemistry, Frontzek et al.⁹ detected A β plaques in the brain gray matter and meningeal vessels in five of seven iCJD patients, who received prion-contaminated dural

Volume 3 Issue 3 - 2016

He Liu

Department of Biology, Gannon University, USA

Correspondence: He Liu, Department of Biology, Morosky College of Health Professions and Sciences, Gannon University, Erie, PA, USA, Tel 8148717871, Email liu017@gannon.edu

Received: April 21, 2016 | **Published:** April 25, 2016

grafting. The frequency of A β seen in these iCJD cases is significantly higher than the frequency in age-matched sCJD cases.

Two alternative but non-exclusive hypotheses may explain the observations. First, as the authors proposed, the A β "seeds" may have been transmitted to the iCJD patients in parallel to the prion contamination by the same c-hGH treatments. Jaunmuktane et al.⁸ also observed frequent presence of A β in the pituitary glands of patients with cerebral A β pathology, as 7 out of 49 examined pituitary samples contained A β . There are also numerous experiments conducted with animal models to support this hypothesis, as A β seeds can transmit within the body after injected.¹⁰⁻¹⁸

However, these lines of evidence still cannot rule out an alternative hypothesis that the prion incubation induced the misfolding and accumulation of A β de novo. Another report,¹⁹ published in September 2015 by Tousseyen et al.¹⁹ supports this hypothesis by the discovery of AD-like changes in sCJD patients. Human brain aggregates (BrnAggs) prepared from 16-week fetal brain tissues, which did not contain extracellular A β plaques, were exposed to the thalamus homogenate from a sCJD patient for 35days. In addition to the presence of PrP, the BrnAggs also showed a higher level of A β and an overwhelmingly large amount of phosphorylated tau, both of which were not seen in the control BrnAggs exposed to normal brain homogenate. The authors also observed that 17% of 266 prion disease cases showed extracellular A β plaques, although no control data in the general population with same ages was included for comparison.

The three recent reports raised more questions about the pathology of the two diseases. Was the c-hGH contaminated with A β , and the injected A β seeds stayed dormant in the recipients but eventually self-propagated in the central nervous system? Or do prion diseases such as sCJD have the nature to induce A β plaques? Maybe both are true. As the authors pointed out, the answers probably do not matter to the prion disease patients as most prion disease patients die within a year of disease onset. However, additional caution should be taken when human proteins are transferred between individuals such as blood transfusion. Or even the clinical sterilization methods need to be re-examined as A β resists formaldehyde and a commonly used disinfectant per acetic acid.^{20,21} More mechanistic studies on the apparent links between the two diseases may provide more insight of the pathology of AD, and hopefully some clues for the prevention of AD in the aging global population.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

1. Will RG, Alperovitch A, Poser S, et al. Descriptive epidemiology of Creutzfeldt–Jakob disease in six European countries, 1993–1995. EU Collaborative Study Group for CJD. *Ann Neurol.* 1998;43(6):763–767.
2. Brown P, Brandel JP, Sato T, et al. Iatrogenic Creutzfeldt–Jakob disease, final assessment. *Emerg Infect Dis.* 2012;18(6):901–907.
3. Prusiner SB. The prion diseases. *Brain Pathol.* 1998;8(3):499–513.
4. Manix M, Kalakoti P, Henry M, et al. Creutzfeldt–Jakob disease: updated diagnostic criteria, treatment algorithm, and the utility of brain biopsy. *Neurology Focus.* 2015;39(5):E2.
5. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and metaanalysis. *Alzheimers Dement.* 2013;9(1):63–75.
6. Stancu IC, Vasconcelos B, Terwel D, et al. Models of beta–amyloid induced Tau–pathology: the long and “folded” road to understand the mechanism. *Mol Neurodegener.* 2014;9:51.
7. Riedel BC, Thompson PM, Brinton RD. Age, APOE and sex: Triad of risk of Alzheimer’s disease. *J Steroid Biochem Mol Biol.* 2016;160:134–147.
8. Jaumuktane Z, Mead S, Ellis M, et al. Evidence for human transmission of amyloid–beta pathology and cerebral amyloid angiopathy. *Nature.* 2015;525(7568):247–250.
9. Frontzek K, Lutz MI, Aguzzi A, et al. Amyloid–beta pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt–Jakob disease after dural grafting. *Swiss Med Wkly.* 2016;146:w14287.
10. Baker HF, Ridley RM, Duchen LW, et al. Induction of beta (A4)–amyloid in primates by injection of Alzheimer’s disease brain homogenate. Comparison with transmission of spongiform encephalopathy. *Mol Neurobiol.* 1994;8(1):25–39.
11. Kane MD, Lipinski WJ, Callahan MJ, et al. Evidence for seeding of beta –amyloid by intracerebral infusion of Alzheimer brain extracts in beta –amyloid precursor protein–transgenic mice. *J Neurosci.* 2000;20(10):3606–3611.
12. DeGiorgio LA, Manuelidis L, Bernstein JJ. Transient appearance of amyloid precursor protein plaques in the brain of thymectomized rats after human leptomeningeal cell grafts. *Neurosci Lett.* 2002;322(1):62–66.
13. Meyer-Luehmann M, Coomarasamy J, Bolmont T, et al. Exogenous induction of cerebral beta–amyloidogenesis is governed by agent and host. *Science.* 2006;313(5794):1781–1784.
14. Eisele YS, Bolmont T, Heikenwalder M, et al. Induction of cerebral beta–amyloidosis: intracerebral versus systemic Abeta inoculation. *Proc Natl Acad Sci U S A.* 2009;106(31):12926–12931.
15. Eisele YS, Obermuller U, Heilbronner G, et al. Peripherally applied Abeta–containing inoculates induce cerebral beta–amyloidosis. *Science.* 2010;330(6006):980–982.
16. Morales R, Duran–Aniotz C, Castilla J, et al. De novo induction of amyloid–beta deposition *in vivo*. *Mol Psychiatry.* 2012;17(12):1347–1353.
17. Hamaguchi T, Eisele YS, Varvel NH, et al. The presence of Abeta seeds, and not age per se, is critical to the initiation of Abeta deposition in the brain. *Acta Neuropathol.* 2012;123(1):31–37.
18. Heilbronner G, Eisele YS, Langer F, et al. Seeded strain–like transmission of beta–amyloid morphotypes in APP transgenic mice. *EMBO Rep.* 2013;14(11):1017–1022.
19. Tousseen T, Bajszarowicz K, Sanchez H, et al. Prion Disease Induces Alzheimer Disease–Like Neuropathologic Changes. *J Neuropathol Exp Neurol.* 2015;74(9):873–888.
20. Fritschi SK, Cintron A, Ye L, et al. Abeta seeds resist inactivation by formaldehyde. *Acta Neuropathol.* 2014;128(4):477–484.
21. Thomzig A, Wagenfuhr K, Daus ML, et al. Decontamination of medical devices from pathological amyloid–beta–, tau– and alpha–synuclein aggregates. *Acta Neuropathol Commun.* 2014;2:151.