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Introduction
In 1861, a French physician, Guillaume Duchenne, first described 

DMD as “pseudohypertrophic muscle paralysis” that preferentially 
afflicts males within families”. It is known as one of the most common 
X-linked diseases, DMD affects 1 in 3500 male newborns and is the 
result of mutations in the dystrophin gene. Dystrophin is one of the 
largest known genes in the human genome, containing 79exons and 
yielding a 14kb transcript.1 Dystrophin protein links the extra- and 
intra-cellular cytoskeleton, neutralizing stressful events that come 
from outside the cell to intracellular matrix (Figure 1). When there 
is a lack of dystrophin protein, there is lack of control for the stress 
and cell damage occurs.2 Disease symptoms can vary from mild to 
severe, depending on the mutation in dystrophin gene. In the case of 
nonsense mutations, there is a premature stop codon that completely 
blocks dystrophin translation, resulting in lack of dystrophin and 
severe clinical presentation. In frame shift mutations, there is an 
exchange of one nucleotide base with another. Compared to the 
nonsense mutation, the frame shift mutation of the gene results in a 
milder clinical presentations. When muscles are biopsied, patients 
who have milder symptoms typically have less functional or truncated 
dystrophin. This milder form of disease is often referred to as Becker 
muscular dystrophy.3

Figure 1 Dystrophin and associated protein complex at cell membrane.

SS, sarcoglycan/sarcospan complex; NOS, neuronal type nitric oxide synthase; 
Syn, syntrophin; DB, dystrobrevin

DMD is characterized as a disease that results in progressive 
muscle weakness and muscle degeneration. DMD manifests at an 
early age of 3 to 5years, beginning as weakness in the upper and lower 
limbs.4,5 Clinically, this can be identified by difficulty with rising 
from the floor in a stereotyped fashion known as the Gowers’ sign.6 
Muscle weakness continues throughout life as cycles of degeneration, 
and regeneration eventually fails. When vital muscles can no longer 
regenerate, patients succumb to their disease, ultimately dying of 
cardiopulmonary insufficiency.7,8 As respiratory muscles fail later in 
life, mechanical ventilation is added to therapy along with other drugs 
aimed at reducing the progression of cardiomyopathy and respiratory 
infection.9,10 Patients with DMD die in their second or third decade 
of life, typically from respiratory or cardiac failure. Unfortunately, 
currently there is no medication targeted to treat this deadly disease 
and correct the primary lesion. Treatment is palliative and focused 
around reducing muscle inflammation and pain with corticosteroid 
therapy.11,12

Until recently, research into possible cures for DMD have focused 
around two methodologies: 

Change of endogenous dystrophin:

Restoration of a proper reading frame to endogenous dystrophin; 
mRNA by using anti-sense RNA oligonucleotides to bridge afflicted 
exons and translate a shorter, but still functional form of dystrophin.13 
Interfering RNA oligonucleotides aim to skip lesion-containing exons 
during translation, restoring expression of a truncated but partially 
functional dystrophin protein. Although successful in animal trials, 
this therapy is still considered premature, which has prevented its 
Food and Drug Administration approval.14 Another approach uses 
chimeroplastic injection of chimeric RNA or DNA. Both have had 
some success but have many limitations as well.15,16 

Delivery of non-endogenous dystrophin protein via 
viral vectors:

Dystrophin’s large size makes it virtually impossible to package 
into most viral capsids.17 Therefore, shortened mini proteins (“e.g. 
mini dystrophin”) that can fit in common viral vectors are currently 
being examined and have shown promising results. The dystrophin 
protein consists of 3645 amino acids with molecular weight of 426kDa. 
It is a long molecule and can be divided into 4 parts: an N-terminal 
actin binding domain, a central rod, a cysteine-rich segment, and a 
C-terminal end (Figure 2). Mutation can occur in any of these four 
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Abstract

Duchenne muscular dystrophy (DMD) is a devastating disease resulting in progressive 
muscular weakness throughout life leading to death. This disease affects 1 in 3500 
boys, who will die from cardiopulmonary failure in their early adulthood. Treatment 
options have been limited to palliative approaches. CRISPR/Cas9, a novel gene 
therapy has recently showed a great potential in animal trials to correct the primary 
genetic lesion of DMD. These recent studies have put into question whether such trials 
should be translated into higher mammalian or even human studies.
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parts. The cysteine-rich domain has multiple functions and mutations 
in this part are often the most severe. Mutations in the other three 
portions of dystrophin protein typically result in milder clinical 
presentation.18,19 Mini-dystrophinwhich is able to be packaged in viral 
vectors typically does not contain the less important rod domain of 
dystrophin.20,21 In this way, the protein can maintain its function, as the 
other parts of dystrophinare functionally more important in preventing 
the disease.18,19

Figure 2 Dystrophin molecules. Parts of dystrophin molecule: 

a) N-terminal

b) Rod

c) Cysteine rich part

d) C-terminal

CRISPR/Cas9 based technology illustrates a new promise of gene 
therapy capable of restoring endogenous dystrophin expression without 
the use of oligonucleotides or recombinant dystrophin.22 CRISPR-
based technology works similarly to oligonucleotide therapy in that it 
restores expression of endogenous dystrophin. Unlike oligonucleotide 
therapy, CRISPR based technology removes the affected exon from 
the host genome altogether, not requiring indefinite treatment like 
pharmacological therapies.11,12 The CRISPR/Cas9 system evolved in 
bacteria as a host defense against foreign genomic material, enabling 
the targeted deletion of specific sequences.23 Recently, this system has 
been redesigned to remove lesions from many mammalian genomes 
in the hope of one day correcting a range of human genetic diseases.24 
This technology has already been used to restore dystrophin 
expression in tissues of the mdx mouse, an animal model of DMD. 
These data were recently described in journal of Science by three 
independent research groups from Duke University, University of 
Texas Southwestern Medical Center, and Harvard University.22,23,25 
Nelson et al.,25 has recently made particularly remarkable advances in 
remodeling CRISPR-based technology to treat DMD. In their study, 
they used Adeno-associated virus to deliver the CRISPR/Cas9 gene 
editing system to delete exon 23, the disease causing exon in the 
mdx mouse. Dystrophin expression was restored in these mice, and 
ameliorated the dystrophic phenotype altogether. The major hallmark 
of the study was the systemic, intravenous delivery of their gene 
editing complex and dystrophin restoration in many different muscles, 
including the heart, which had proven to be exceptionally difficult to 
target in the past.25

Although very promising, CRISPR-based technology requires 
further research before translation to human studies. How the CRISPR/
Cas9 gene editing system will react with the human immune system 

is still entirely unknown. Another potential concern is off-target 
cuts, or the erroneous excision of genetic material; this is arguably 
the greatest disadvantage of this system. In addition, a potential 
therapeutic approach that seeks to explore gene editing in humans will 
likely raise many ethical questions. However, even though there are 
many questions to be answered, CRISPR/Cas9 gene editing system is 
definitely the most successful gene therapy to date used in an animal 
model of DMD, and it will be exciting to see how this furthers the 
treatment of the disease in humans. 
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