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ions to flow across the cell membrane through the pore. Furthermore, 
activated NMDA receptors also allow the entry of Ca2+ into the cell 
which will then trigger a series of cellular events, such as activations 
of Ca2+/calmodulin-depedent protein kinase (CaMKII), protein kinase 
C (PKC) and the insertion of another type of glutamate receptor, 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptor, into the postsynaptic membrane via exocytosis,2 so that the 
synaptic response to glutamate is strengthened. This is believed to be 
the basis of learning and memory. Dysfunctions of NMDA receptors 
may contribute to pain sensation and various brain disorders such as 
depression, schizophrenia, Huntington’s disease, Alzheimer’s disease, 
and Parkinson’s disease.3

Recently, two independent studies, by Karakas & Furukawa4 
and Lee et al.,5 revealed the first insight of the crystal structure of 
NMDA receptor in almost complete configurations. In both studies, 
the NMDA receptors are heterotetrameric complexes comprised 
of two GluN1 and two GluN2B subunits. In order to stabilize the 
crystal structures, both groups used ligands, agonists, or antagonists, 
together with introductions of multiple mutations in the subunits 
and eventually obtained crystals of NMDA receptor in an inactive 
state. Both structures (Protein Data Bank IDs: 4PE5 and 4TLL) have 
resolutions better than 4Å, and both show two key characteristics 
reminiscent of the subunit organization of AMPA receptor obtained 
five years ago.6 First, the two GluN1 subunits and the two GluN2 
subunits are arranged in an alternate pattern around the central pore, 
with twofold symmetry between the two GluN1-GluN2 heterodimers. 
Secondly, the receptor domains are layered. The amino terminal 
domain (ATD), which controls the gating of the channel and allows 
modulator bindings, is at the exterior end. The transmembrane domain 
(TMD), which provides the basis of the ion channel stays in the cell 
membrane. The ligand-binding domain (LBD), hosting the binding 
sites of ligands or their agonists and antagonists, is sandwiched 
between the ATD and the LBD. Going from the ATD to the LBD, 
the subunits in the two heterodimers swap domains, therefore the 
four subunits are intertwined into one complex. However, compared 
to the AMPA receptor structure, the ATD layer of NMDA receptor 
involves a much larger interaction interface therefore the ATD is more 
compactly packed within itself and against the LBD. Using engineered 
disulfide cross-links, Karakas and Furukawa further confirmed the 
physiological relevance of the distinct subunit interactions. The two 
groups also reached a consensus that the pore structure in the TMD 
shows a high similarity to potassium channels structure.7,8 Moreover, 

Karakas and Furukawa used lanthanides to show the putative Ca2+ 
binding sites at the linker region connecting the LBD and the TMD. 
Lee et al. found a probable blocker binding site in the central vestibule 
to prevent ions from entering the selectivity filter. In summary, the 
structures identified by the two groups are highly similar, and the slight 
differences in crystal preparation and structural features complement 
one another. Although limited only to the inactive state, together these 
two studies provide a blueprint of the molecular structure of NMDA 
receptor and a framework for exploring the structures of other NMDA 
receptors with different compositions or in other states.
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Editorial
N-Methyl-D-aspartate (NMDA) receptors are cation channels 

gated bytheneurotransmitter glutamate in the central nervous system. 
An NMDA receptor consists of three or four subunits from three 
subfamilies and seven different subunit types: the obligatory GluN1, 
four GluN2 (A-D), and two GluN3 (A-B) subunits.1 The activation 
of NMDA receptors by bindings of glutamate and glycine, together 
with postsynaptic depolarization, removes the Mg2+ that blocks the 
pore of NMDA receptor while cell is at rest and causes Na+ and K+ 
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