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Introduction
Increase in the frequency of gestational diabetes mellitus (GDM) 

and its adverse consequences for mother and child dictates the need 
to study the mechanisms underlying the development of pregnancy 
complications.1–5 It is known that, in the course of physiological 
pregnancy there are moderate hyperinsulinemia and insulin resistance 
associated with an increased need for insulin as a result of the 
restructuring of metabolic processes in the female body, designed to 
ensure optimal delivery of nutrients to the developing fetus is thus 
observed to increase insulin biosynthesis, increased stimulated glucose 
secretion and increase in mass of pancreatic β-cells.6 However, the 
question arises: why the number of pregnant pancreatic function is 
not sufficient to accommodate the metabolic needs during pregnancy, 
blood glucose levels rise to pathological variables and diagnosed with 
diabetes? Since the frequency of GDM varies considerably among 
ethnic populations, and its growth is in direct proportion to the 
increase of type 2 diabetes, which develops later in life in survivors of 
HSD (Health Search Database), the attention of researchers in recent 
years, attracted to the study of genetic factors predisposing to this 
complication of pregnancy.7 A number of genetic variants that may 
explain some of the individual features of the predisposition to HSD,8,9 
include different genes (PPARG, KICNJ11, TCF2 / HNF1B, WFS1, 
HNF4A), dysfunction associated with insulin secretion of pancreatic 
β-cells with gestational diabetes and type 2 diabetes.10 In addition, 
it discusses the role of epigenetic modifications activity of genes 
involved in the regulation of glucose metabolism and insulin secretion 
occurring during sleep disorders, in a pregnant woman, the night shift, 
low physical activity, etc.7,11 At the same time, numerous studies have 
shown that GDM risk is present in obese women,12,13 the metabolic 
syndrome,14,15 PCOS, endometriosis16 as well as in having a history 
of miscarriage due to hormonal causes17 HSD previous pregnancy 
complications.7,10,18 The results of our investigations have revealed the 

disease three or more functional systems (endocrine, cardiovascular, 
immune, gastrointestinal tract) in 85% of mothers whose pregnancy 
was complicated by gestational diabetes. This suggests that they have 
a diffuse pathology neuroimmunoendocrinosystem, which is a leading 
hormone melatonin - homeostasis regulator providing a functional 
relationship between mechanisms.19,20 It should be emphasized 
that for all the above forms of disease, determining the risk of 
developing GDM, researchers have noted a low level of melatonin 
in the body, and its violation of the circadian changes.21–28 Melatonin 
is synthesized from pinealocytes in pineal gland, the endocrine 
function of which is controlled by the suprachiasmatic nuclei of the 
hypothalamus and has a diurnal rhythm. Light information from the 
retinal ganglion cells through retino-hypothalamic tract enters the 
suprachiasmatic nuclei (SCN) of the hypothalamus, where the signals 
are in the upper cervical ganglia and then sympathetic noradrenergic 
pathways reach epiphysis, where melatonin is synthesized. Light 
inhibits the production and secretion of melatonin, so its maximum 
level in the epiphysis and human blood is observed during night, and 
the minimum, in the afternoon.29,30 Availability circadian rhythm of 
melatonin production is a marker of normal operation endogenous 
circadian biorhythm regulation and synchronization with the external 
circadian rhythm of alternation between day and night.19,31–33

Melatonin is produced not only in the epiphysis. Ekstrapinealny 
melatonin was found in all organs: the gastrointestinal tract, liver, 
kidneys, adrenal glands, heart, thymus, gonads, placenta, uterus, 
platelets, eosinophils, leukocytes, and other cells of the immune 
system.34,35 Thus, its synthesis in mitochondria of eukaryotic cells 
indicates unique protection of melatonin cellular organelles from 
oxidative damage and maintaining their physiological functions.36–38 

Melatonin is synthesized from the amino acid tryptophan by 
hydroxylation of which (an enzyme tryptophan hydroxylase) and 
decarboxylation (the enzyme 5-ksitriptofandekarboksilaza) is 
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Abstract

This review summarizes the literature on melatonin production and its role in the 
regulation of carbohydrate metabolism, mechanisms of functional relationships 
between melatonin, insulin, glucagon and circadian organization of the pancreas. 
The results of experimental and clinical studies have shown that the basis for the 
development of gestational diabetes is low production of melatonin and the lack 
of its circadian rhythm in women with abnormal neuroimmunoendocrino system 
that determines the possibility of prediction and prevention of this complication of 
pregnancy.

This review summarizes many of the published reports about the production of 
melatonin and its role in regulation of carbohydrate metabolism, interrelationships 
between melatonin, insulin, glucagon and diurnal signaling the blood-glucose-
regulating of the islet. The results of experimental and clinical investigations 
support that low melatonin levels and absence of its circadian rhythm, play the 
role in the development of gestational diabetes mellitus in women with pathology 
of neuroimmunoendocrinology system and suggest the possibility of prognosis and 
Prophylaxis for this complication of pregnancy.
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converted into serotonin. Using enzymes N-acetyltransferase (NAT) 
and oxindole-O-methyltransferase (HIOMT) formed of serotonin, 
melatonin. From pinealocytes, pineal melatonin is released into the 
blood and cerebrospinal fluid, whereas melatonin secreted by other 
cells in the body, enters the blood in small amounts, giving a field of its 
synthesis paracrine and autocrine effect.39 With a hydrophilic molecule 
of melatonin at the same time, it is highly lipophilic and therefore 
easily penetrates the blood-brain and the placental barrier, takes place 
in the capillaries, where 70% of melatonin binds to albumin. The 
half-life of melatonin ranges from 30 to 45 minutes.40 Melatonin is 
metabolized in the liver and kidneys. The end products of metabolism 
are 6-sulfatoksi-melatonin and acetylsalicylic acid.29,39 Melatonin 
provides regulating effect through specific G-protein linked membrane 
receptors (MT1, MT2, MT3) and nuclear receptors (RORα),38,41 which 
are found in the suprachiasmatic nuclei of the hypothalamus, the 
cerebellum, retina, spleen, pancreas, liver, mammary gland, uterus, 
thymus, gastrointestinal tract, platelets, lymphocytes.39,42–44 More than 
75 years ago, the role of the pineal gland peptide, called “pinealinom” 
in the regulation of carbohydrate metabolism was first reported.45 It 
was identified with insulin-like hypoglycemic, anabolic and anti-
cholesterol effects.40 In the following decades, numerous experimental 
studies were performed at the molecular level, the mechanisms 
established functional connections between melatonin, insulin and 
glucagon.40,45 The pancreas tissue revealed membrane MT1, MT2 
and G-protein associated (GPR50) receptors, as well as mRNA 
nuclear receptors through which melatonin performs a modulating 
effect on the insulin and glucagon secretion.46–48 Furthermore, in the 
pancreas as well as in other tissues, there are autonomous circadian 
genes (Bmal, Clock, Per1, Cry1), through which is realized the 
impact synchronizing circadian rhythm of melatonin on epiphyseal 
β- and α-cells.49 At night there is a high production of melatonin, but 
lower insulin secretion, and at day on the contrary.31,50 Melatonin 
stimulates the secretion of glucagon pancreatic α-cells, which defines 
the circadian rhythm of production and glucose metabolism.49,51 The 
effect of melatonin on pancreatic α- and β-cells and insulin secretion 
is provided through a complex type of intercellular and intracellular 
signalling pathways.52 Furthermore, melatonin protects pancreatic 
cells from free radical damage by the elimination of free radicals 
and activates antioxidant enzymes.31,37,53 The circadian amplitude of 
the melatonin level decreases with age, especially when working 
and active lifestyle at night, and sleep disorders, resulting in hyper 
insulinemia, insulin resistance, and hyperglycemia, i.e. symptoms 
characteristic of type 2 diabetes.54–57 The development of these 
pathological conditions with low production of melatonin and absence 
of its circadian rhythm are associated with impaired regulation of 
synthesis and secretion of insulin from β-cells of the pancreas and its 
binding to the receptor membranes of the target cells, suppression of 
expression GLYUT4 gene and decrease of the protein content.58,59 The 
experiment demonstrated that the removal of the epiphysis in insulin-
sensitive tissues (white and brown adipose tissue, skeletal and cardiac 
muscle) sharply decreases GLYUT4 mRNA (GLUT4 mRNA), and 
the content of microsomal membrane protein. Furthermore, in the 
absence of melatonin disrupted insulin receptor function, in particular, 
MT2 adipocytes in adipose tissue, dramatically reduces glucose 
uptake by these cells.60,61 Identified pinealectomy effects disappeared 
as a result of treatment with melatonin.62,63 Thus, melatonin epiphyseal 
is required for the synthesis, secretion and insulin implementation 
functions. Reducing its production leads to disruption of circadian 
rhythms of metabolic processes in the body and the development 
of the pathological condition of the energy balance, obesity, insulin 

resistance and impaired glucose tolerance.58 The level of melatonin 
in the blood plasma as well as its synthesis, play the key enzyme 
activity (AA-NAT) in the pineal gland which is significantly reduced 
in type 2 diabetes, that underlies excess of pancreatic β-cells,49 insulin 
resistance and impaired glucose tolerance.58 

Melatonin and its circadian rhythm of secretion is determined 
for a successful pregnancy and birth of a healthy child. First, the 
melatonin and its metabolites function as direct absorbers produced 
during pregnancy of free radicals stimulate antioxidant enzymes, 
thereby providing a stable protection against free radical damage at 
the cellular and tissue levels in a single system mother-placenta – 
fetus.64–66 In individuals with abnormal neuroimmunoendocrinosystem 
and initially low production of melatonin, when the body’s adaptation 
to pregnancy, significant activation of free radical oxidation leads to 
the depletion of antioxidant reserves and primarily melatonin.67,68 Not 
only low levels of melatonin, but violation as a result of oxidative 
modification of proteins the functional state of its receptors, providing 
regulation of the production of insulin and glucagon in the β and 
α-cells of the pancreas, leading to uncontrolled insulin secretion not 
only in daytime but also at night. The consequence of these processes 
is the development of insulin resistance and consequent impairment of 
glucose tolerance. Besides, β-cells being unable to adequately secrete 
sufficient amounts of insulin over long time to compensate for insulin 
resistance, it also contributes to hyperglycemia. To confirm the role of 
melatonin in the development of gestational diabetes data researchers 
set low melatonin secretion and the absence of its daily rhythm in 
the second and third trimesters of a given pregnancy complications, 
combined with the sleep disorder, the shortening of a night’s sleep and 
quality features.69,70 The changes with gestational diabetes, micro PHA 
production (microRNAs), which normally has a circadian rhythm.71 It 
is found that the presence of melatonin receptor gene polymorphism 
and MTNR1B rs10830963 MTNR1B rs4753426 increases the 
risk of developing gestational diabetes.72–74 This shows that women 
with GDM, exhibit reduced receptor binding ability GLYUT4 
and glucose transport in adipose tissue and skeletal muscle.71,75,76 
Use of melatonin and stabilization of circadian rhythm, normalize 
metabolism optimized during pregnancy and fetal development.28,49,77 

Thus, the results of experimental and clinical studies have expanded 
our understanding towards the mechanisms of regulation regarding 
carbohydrate metabolism and energy metabolism, indicate the 
possibility of prediction of complications in future pregnancies with 
diabetes at the stage of family planning and timely implementation 
of preventive measures, including circadian rhythm normalization of 
sleep and wakefulness, energy metabolism, antioxidant status, and if 
necessary treatment with melatonina. In addition, the available data 
indicate the need for special attention to keeping in obstetric hospitals 
light conditions for the endogenous production of melatonin, as well 
as restrictions on the use of its suppressive drugs.78,79 Increased in 
the last decade, the interest of researchers to study the physiological 
role of melatonin in the reproductive function, gave sample evidence 
that determine the optimal course of pregnancy, delivery and fetal 
development, making a promising development of new approaches 
to its use in obstetrics.
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