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Abbreviations: RIPC, remote ischemic preconditioning; IRI, 
ischemic reperfusion injury; eNOS, endothelial NO synthase; TLRs, 
toll- like receptors

Introduction
Ischemic preconditioning is a technique where prior application 

of repeated short cycles of ischemia and reperfusion would be able 
to attenuate the severity of the subsequent ischemic reperfusion 
injury (IRI). Remote ischemic preconditioning (RIPC) describes the 
ability of the technique to function through distance. For example, 
the application of short, repetitive ischemia- reperfusion cycles of the 
limb would protect distant organs like heart, kidney, brain and liver 
during subsequent IRI. Both phenomena indicate the involvement 
of local, paracrine as well as remote, circulating mediators.1 During 
limb ischemia, the diminished flow and shearing stress would be 
associated with cell membrane depolarization and inhibition of the 
inward driving K+ channels. The inhibition of KATP channels would 
lead to the activation of T type Ca2+ channels and increased Ca2+ 
influx into endothelial cells. Increased intracellular Ca2+ activates Ca2+ 
-dependent endothelial NO synthase (eNOS).1,2

Simultaneously, hypoxia and ischemia would result in an 
increased production of reactive oxygen species (ROS). Hypoxia 
inhibits oxidative phosphorylation and results in decreased ATP 
production. That activates xanthine oxidase, leading to increased ROS 
production. The inhibition of KATP channels, and the persistence 
of cell membrane depolarization would result in NADPH oxidase 
(NOX2) activation, leading to more increase of ROS production.1,3 
Increased production of both NO and ROS would be associated with 
NO oxidation to produce nitrite (NO2

-). Several studies documented 
the important role of NO in mediating the protective effect of IPC 
and RIPC. While the locally produced NO can exert its action in case 
of IPC, it can’t be accused for RIPC protective effect because of its 
short blood half-life (≤2 milliseconds).4 However, it was observed 
that NO inhalation in human provides protection against IRIs, while 
being associated with a significant increase in the circulating levels 
of nitrite. In addition, NO2

- showed the ability to protect against IRI, 
to exert cytoprotective effects, and to decrease the infarction size 

similar to NO.5–12 Moreover, it has recently been confirmed that the 
application of brachial artery RIPC results in the activation of eNOS 
and increased plasma NO2

- levels.13

In the heart, NO2- would be reduced to NO and N2O3 by 
myoglobin.14,15 NO and S- nitrosothiols formed from nitrite would 
inhibit complex I of the respiratory chain during reperfusion. This 
would attenuate the increased production of ROS in response to IRI, 
and would indirectly affect the functionality of complex II.16,17 Being 
at cross-talking with mitochondrial KATP channels, modification of 
the functional activity of complex II would influence the activity of 
mitochondrial KATP channels,18 this might contribute to an improved 
activity of these channels in response to RIPC, which would inhibit 
the opening of mitochondrial permeability transition pores and the 
subsequent release of cytochrome-c during reperfusion.17,19

An important mechanism in the development of the IRI is the 
increased production of inflammatory cytokines, which would be 
responsible for the recruitment of inflammatory cells and initiation of 
adverse inflammatory reactions.20 In addition to the significant increase 
of ROS production, IRI activates toll- like receptors (TLRs). Both 
result in priming of the heart inflammasomes.21 During ischemia and 
hypoxia, as well as cold preservation of the heart graft, the associated 
inhibition of Na+- K+ ATPase and or other K+ channels would result in 
decreased intracellular K+ levels. Even with the administration of high 
extracellular K+ concentrations (during cardioplegia), this would lead 
to the closure of K+ channels.3 The end result would be the drop of 
intracellular K+ levels, which activates the primed inflammasomes.22 
Activated inflammasomes activate caspase - 1, which activates 
proIL1β and proIL18, which are able to induce IL6. With the 
important role of inflammasomes and TLRs in the establishment of 
the inflammatory reactions of the IRI, the above described role of NO 
and NO2

- to attenuate ROS production and to improve the activity 
of KATP channels would interfere with inflammasomes priming and 
activation in response to IRI. Accordingly, this would contribute 
to decreased production of inflammatory cytokines, which would 
ultimately attenuate the immune cell infiltration and the adverse 
immune reactions generated in response to the IRI (Figure 1).

This mechanism of action highlights the importance of 
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Abstract

Remote ischemic preconditioning (RIPC) is a technique where the application of short, 
repetitive limb intervals of ischemia and reperfusion would result in the condition of 
the heart as well as other organs to tolerate the is chemic reperfusion injury. Many 
research groups are interested in investigating the mediators, through which this 
technique works. Many mediators have been suggested to mediate the protective 
actions of RIPC. In this manuscript, the author represents his personal viewpoint 
regarding a possible mechanism of action of this technique, based on recent published 
findings, which confirm the ability of the technique to play an important role in the 
clinical practice of heart transplantation.
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inflammasomes inactivation, through RIPC, for the attenuation 
of the hazards of IRI. Although it was reported to the contrary by 
some studies that the deletion of NLRP3 (which is the most studied 
inflammasome component) abates the protective effects of IPC due to 
the inhibition of IL6 production and lacking of its signaling.23 It seems 
that various inflammatory cytokines are involved in the stimulation 
of the adverse inflammatory reactions in response to IRI, as well as, 
in protective feedback signaling against subsequent IRI. Accordingly, 
the above discussed scenario should be confirmed as a whole by 
experimental studies, to identify whether blocking the release of IL1β 
and IL18, with the subsequent lack of IL6 induction, would increase 
or decrease heart protection in response to RIPC. Nevertheless, the 
augmentation of the above presented scenario at different levels (for 
example, through NO inhalation, NO2- administration, the use of 
KATP channel agonists) prior to heart transplantation, and or other 
forms of cardiac IRI, was found to provide a significant degree of 
protection, with associated better clinical outcomes.24 

Figure 1 Diagrammatic representation of the mechanism, through which 
NO2- generated in response to RIPC would be involved in the attenuation 
of inflammasomes activation and cytokine production within the heart in res-
ponse to IRI.

Conclusion
This manuscript reviews a possible mechanism, through which 

NO2- generated in response to RIPC would be involved in the 
attenuation of inflammasomes activation and cytokine production 
within the heart in response to IRI, for instance during transplantation. 
Further studies should be conducted to confirm this mechanism, and 
whether it could be also considered for other organs such as lung, 
kidney and liver.
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