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Introduction
As a part of Pd-catalyzed reactions the Heck-Mizoroki reaction 

has a huge significance in R&D of pharmaceuticals.1 Since the very 
first steps in the discovery of this reaction type, double arylation 
of acrylic esters have been known, but just recently investigated in 
greater detail. In most cases β,β-diarylated acrylates were obtained 
under demanding conditions such as high pressure,2 special metal-
ligand systems,3,4 ionic liquids5 or special auxiliary reactants.6 

Double arylation has also been observed in microwave reactions.7 
By using propenols as starting material double arylation could be 
achieved in a domino Heck-isomerization/Saegusa/Heck reaction 
resulting in β,β-diarylated propenals.8 Yet no study focused on the 
basic conditions that were already used in the very first years after 
discovering this reaction type. Going back to its origins, we developed 
a simple and straightforward procedure that uses a basic metal-ligand 
system to synthesize β,β-diarylated acrylates and gives access to a 
pharmaceutical interesting class of products that is usually received 
under harsh conditions and in bad yields. 

General procedure
Methyl acrylate (600mg, 6.97mmol), aryl iodide (27.9mmol, 4eq), 

potassiumcarbonate (2.12g, 15.3mmol), palladium acetate (78.2mg, 
348µmol) and tri-o-tolylphosphine (212mg, 697µmol) are dissolved 
in dimethylformamide (5ml) and stirred for 3hours at 70°C. Then the 
mixture is stirred for 72hours at 110°C. Ethyl acetate (30ml) is added, 
the solution washed with brine (15ml) and water (15ml) and the 
organic layer is dried with sodium thiosulfate. The solvent is removed 
under reduced pressure and the product is obtained after column 
chromatography on silica gel (hexane/ethylacetate 20:1v/v).

3,3-Di-p-tolylmethylacrylate (2a)

Yield: 562.7mg, yellow oil: 1H-NMR (500MHz, CDCl3): δ=7.23 
(dd, J=8.0, 3.9 Hz, 4H), 7.15 (dd, J=7.7, 5.6 Hz, 4H), 6.35 (s, 1H), 
3.65 (s, 3H), 2.43 (s, 3H), 2.39 (s, 3H).

13C-NMR (126MHz, CDCl3): δ=166.62 (s), 157.43 (s), 139.70 (s), 
138.40 (s), 138.04 (s), 136.05 (s), 129.25 (s), 129.14 (s), 128.64 (s), 
128.43 (s), 115.66 (s), 51.19 (s), 21.47 (s), 21.30 (s).

MS (70 eV, EI): m/z (%)=266.1 (100), 235.1 (98), 219.1 (6), 207.1 
(26), 191.1 (40), 178.1 (13), 165.1 (18), 119.1 (33), 91.1 (13)

3,3-Di-m-tolylmethylacrylate (2b)

Yield: 527.4mg, colourless oil: 1H-NMR (500 MHz, CDCl3): 
δ=7.38–7.27 (m, 1H), 7.26 – 7.14 (m, 4H), 7.08 (dd, J=24.4, 7.5 Hz, 
2H), 7.03 (s, 1H), 6.36 (s, 1H), 3.64 (s, 3H), 2.38 (s, 3H), 2.35 (s, 3H).

13C-NMR (126MHz, CDCl3): δ=166.54 (s), 157.50 (s), 145.12 (s), 
141.08 (s), 138.94 (s), 138.06 (s), 137.46 (s), 131.20 (s), 130.27 (s), 
129.66 (s), 129.02 (s), 128.92 (s), 128.32 (s), 127.77 (s), 126.36 (s), 
125.71 (s), 116.71 (s), 51.25 (s), 21.53 (s), 21.47 (s).

MS (70 eV, EI): m/z (%)=266.1 (94), 235.1 (100), 219.1 (9), 207.1 
(62), 192.1 (53), 178.1 (16), 165.1 (24), 115.1 (38), 89.1 (14)

3,3-Di-o-tolylmethylacrylate (2c)

Yield: 134mg, colourless oil: 1H-NMR (500MHz, CDCl3): 
δ=7.32–7.13 (m, 8H), 6.21 (s, 1H), 3.67 (s, 3H), 2.40 (s, 3H), 2.22 
(s, 3H).

13C-NMR (126MHz, CDCl3): δ=166.20 (s), 156.83 (s), 140.80 (s), 
139.42 (s), 135.77 (s), 135.60 (s), 131.30 (s), 130.18 (s), 129.92 (s), 
129.21 (s), 128.45 (s), 128.05 (s), 125.86 (s), 125.33 (s), 121.64 (s), 
51.35 (s), 20.93 (s), 19.96 (s).

MS (70 eV, EI): m/z (%)=266.1 (12), 251.1 (42), 235.1 (100), 
219.1 (19), 205.1 (41), 191.1 (99), 178.1 (45), 165.1 (28), 115.1 (55), 
91.1 (23)

3,3-Bis(4-methoxyphenyl)methylacrylate (2d)

Yield: 868.4mg, yellow oil: 1H-NMR (500MHz, CDCl3): δ=7.28–
7.23 (m, 2H), 7.19–7.14 (m, 2H), 6.95–6.89 (m, 2H), 6.88–6.82 (m, 
2H), 6.25 (s, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 3.63 (s, 3H).

13C-NMR (126MHz, CDCl3): δ=166.73 (s), 160.85 (s), 159.76 (s), 
156.85 (s), 133.84 (s), 130.90 (s), 130.03 (s), 114.30 (s), 113.76 (s), 
113.26 (s), 55.33 (s), 55.19 (s), 51.09 (s).

MS (70 eV, EI): m/z (%)=298.1 (100), 267.1 (59), 240.1 (17), 
225.1 (27), 209.1 (10), 195.1 (8), 181.1 (10), 165.1 (15), 152.1 (26), 
135.1 (51)

3,3-Bis(3-methoxyphenyl)methylacrylate (2e)

For this derivate 300mg (3.48mmol) of methyl acrylate were 
used as educt.
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Abstract

The Heck-Mizoroki reaction was further developed into a straightforward and efficient 
procedure that uses a basic metal-ligand system to synthesize β,β-diarylated acrylates 
and gives access to a pharmaceutical interesting class of products that is usually 
obtained under considerably harsher conditions and worse yields.
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Yield: 234mg, yellow oil: 1H-NMR (500MHz, CDCl3): δ=7.32–
7.28 (m, 1H), 7.24 (t, J=8.0 Hz, 1H), 6.93 (dd, J=2.6, 0.9 Hz, 1H), 
6.92 – 6.89 (m, 2H), 6.87–6.84 (m, 1H), 6.83 – 6.80 (m, 1H), 6.76 
(dd, J=2.5, 1.6 Hz, 1H), 6.37 (s, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.62 
(s, 3H).

13C-NMR (126MHz, CDCl3): δ=166.38 (s), 159.64 (s), 159.29 (s), 
156.48 (s), 142.11 (s), 140.16 (s), 129.42 (s), 128.99 (s), 121.65 (s), 
120.93 (s), 117.22 (s), 114.95 (s), 114.78 (s), 114.07 (s), 113.80 (s), 
55.36 (s), 55.29 (s), 51.35 (s).

MS (70 eV, EI): m/z (%)=300.1 (3), 298.1 (100), 267.1 (71), 239.1 
(59), 224.1 (24), 208.1 (11), 195.1 (11), 181.1 (16), 165.1 (27), 152.1 
(33), 135.1 (21)

3,3-Bis(4-chlorophenyl)methylacrylate (2f)

Yield: 898mg, yellow solid: 1H-NMR (500MHz, CDCl3): δ=7.36 
(d, J=8.6 Hz, 2H), 7.29 (d, J=8.8 Hz, 2H), 7.19 (d, J=8.8 Hz, 2H), 7.13 
(d, J=8.6 Hz, 2H), 6.33 (s, 1H), 3.62 (s, 3H).

MS (70 eV, EI): m/z (%)=309.0 (9), 308.0 (45), 306.0 (68), 277.0 
(65), 275.0 (100), 247.0 (20), 212.0 (78), 176.1 (70), 139.0 (24)

3,3-Bis(3-chlorophenyl)methylacrylate (2g) 

Yield: 433mg, yellow oil: 1H-NMR (500MHz, CDCl3): δ=7.38 
(ddd, J=8.1, 2.0, 1.3 Hz, 1H), 7.35 (ddd, J=7.4, 2.2, 1.1 Hz, 1H), 7.34 
(t, J=7.8 Hz, 1H), 7.27 (t, J=7.9 Hz, 1H), 7.27 (t, J=4.6 Hz, 1H), 7.19 
(t, J=1.7 Hz, 1H), 7.17 – 7.13 (m, 1H), 7.10 (dt, J=7.4, 1.4 Hz, 1H), 
6.37 (s, 1H), 3.64 (s, 3H).

13C-NMR (126MHz, CDCl3): δ=165.80 (s), 153.89 (s), 142.08 (s), 
139.96 (s), 134.80 (s), 134.20 (s), 129.89 (s), 129.78 (s), 129.46 (s), 
129.12 (s), 128.72 (s), 128.24 (s), 127.41 (s), 126.49 (s), 118.82 (s), 
51.59 (s), 31.70 (s), 22.77 (s), 14.22 (s).

MS (70 eV, EI): m/z (%)=309.0 (10), 308.0 (44), 306.0 (67), 277.0 
(66), 275.0 (100), 247.0 (35), 212.0 (97), 176.1 (87), 139.0 (16)

3,3-Bis(4-fluorophenyl)methylacrylate (2h) 

Yield: 167mg, yellow solid: 1H-NMR (500MHz, CDCl3): δ=7.26 
(dd, J=9.0, 5.3 Hz, 2H), 7.18 (dd, J=8.8, 5.4 Hz, 2H), 7.08 (t, J=8.7 
Hz, 2H), 7.02 (t, J=8.7 Hz, 2H), 6.31 (s, 1H), 3.62 (s, 3H).

13C-NMR (126MHz, CDCl3): δ=166.27 (s), 164.75 (s), 163.92 (s), 
162.75 (s), 161.95 (s), 155.04 (s), 143.64 (s), 136.99 (d, J=2.9 Hz), 
134.50 (d, J=3.2 Hz), 131.21 (s), 131.15 (s), 130.34 (s), 130.28 (s), 
130.08 (s), 130.01 (s), 117.06 (s), 115.72 (s), 115.54 (s), 115.28 (s), 
115.11 (s), 51.41 (s).

MS (70 eV, EI): m/z (%)=274.1 (77), 243.1 (100), 214.1 (72), 
194.1 (30), 175.1 (15), 123.0 (27)

3,3-Di(naphthalene-1-yl)methylacrylate (2i) 

Yield: 164mg, yellow oil: 1H-NMR (500MHz, CDCl3): δ=8.52 
(dd, J=8.3, 0.7 Hz, 1H), 8.06 (d, J=8.3 Hz, 1H), 7.96–7.85 (m, 3H), 
7.82 (dd, J=5.9, 3.4 Hz, 1H), 7.60–7.51 (m, 2H), 7.50–7.45 (m, 2H), 
7.45–7.39 (m, 2H), 7.38–7.33 (m, 2H), 6.64 (s, 1H), 3.50 (s, 3H).

13C-NMR (126MHz, CDCl3): δ=166.10 (s), 153.58 (s), 139.57 (s), 
138.36 (s), 134.31 (s), 133.70 (s), 131.42 (s), 130.87 (s), 129.22 (s), 
128.86 (s), 128.67 (s), 128.61 (s), 127.25 (s), 126.98 (s), 126.58 (s), 
126.46 (s), 126.08 (s), 125.85 (s), 125.31 (s), 125.22 (s), 125.18 (s), 
125.11 (s), 124.36 (s), 60.47 (s), 51.41 (s), 21.13 (s), 14.31 (s).

MS (70 eV, EI): m/z (%)=338.1 (19), 305.1 (12), 278.1 (100), 
263.1 (11), 210.1 (23), 179.0 (10), 152.1 (10), 138.1 (26)

3,3-Bis(3,4-dimethylphenyl)methylacrylate (2j) 

Yield: 90.5mg, yellow oil: 1H-NMR (500MHz, CDCl3): δ=7.17 
(d, J=7.6 Hz, 1H), 7.13 (s, 1H), 7.10 (d, J=7.9 Hz, 1H), 7.04 (dd, 
J=7.9, 1.8 Hz, 1H), 6.99 (dd, J=10.3, 2.6 Hz, 2H), 6.31 (s, 1H), 3.64 
(s, 3H), 2.33 (s, 3H), 2.29 (s, 2H), 2.28 (s, 3H), 2.26 (s, 2H).

13C-NMR (126MHz, CDCl3): δ=166.73 (s), 157.84 (s), 139.01 (s), 
138.37 (s), 136.64 (s), 136.59 (s), 136.53 (s), 135.97 (s), 130.34 (s), 
129.69 (s), 129.54 (s), 129.16 (s), 126.91 (s), 126.24 (s), 115.50 (s), 
51.19 (s), 31.71 (s), 22.77 (s), 19.87 (s), 19.79 (s), 19.68 (s), 14.21 (s).

MS (70 eV, EI): m/z (%)=294.2 (100), 263.1 (81), 235.1 (25), 
220.1 (29), 205.1 (25), 189.1 (19), 133.1 (34)

Conclusion
This study reports a simple as efficient metal-ligand catalyzed 

way to generate β,β-diarylated acrylic acids from standard 
chemicals. Moreno-Mañas et al. showed the double arylation of ethyl 
cinnamates using similar conditions and a phase-transfer catalyst.9 
Unfortunately, this study only produced asymmetric ethyl 3-aryl-
3-phenyl propenoates with para-substituted aryls. To get a wider 
view on this reaction, we varied the position of the substitutes and 
generated symmetric 3,3-diarylic esters. While usual ways to generate 
diarylated acrylic acids need complex ligands for the palladium, we 
used tri(o-tolyl)phosphine as ligand. As base potassium carbonate 
showed to have the best results yield-wise. The reaction was carried 
out in dimethylformamide and stirred for 3 days at 110°C. The aryl 
iodides were used in excess and the unreacted aryl iodides were 
retrieved from the reaction mixture. The results are listed in Table 1.
Table 1 Double arylation of acrylic esters via Heck reaction

Entry Aryl iodide Product Yield (%)

1 4-MeC6H4I 2a 30

2 3-MeC6H4I 2b 28

3 2-MeC6H4I 2c 7

4 4-MeOC6H4I 2d 42

5 3-MeOC6H4I 2e 23

6 4-ClC6H4I 2f 8

7 3-ClC6H4I 2g 20

8 4-FC6H4I 2h 9

9 C10H7I 2i 7

10 3,4-Me2C6H3I 2j 4

O

O O

O

R

R

4 eq. aryl iodide
2.5 eq. K2CO3
5 mol% Pd(OAc)2
10 mol% P(o-tol)3

DMF, 110 °C, 3d

1 2a−i
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The highest yields were achieved by using methyl acrylic esters; 
benzyl and tert-butyl esters did only produce the monoarylated 
products. The equivalents for the aryl halides were raised from 
2 equivalents up to 4 equivalents, where no yield improvement 
was observed above this amount. Potassium carbonate proved to 
be a better choice for the base than trimethylamine and tri(o-tolyl)
phosphine showed to be the ligand of choice in comparison to 
triphenylphosphine and dppe. Electron deficient aryl halides such 
as iodopyridin or 3-chloro-4-iodobenzotrifuoride only delivered the 
monoarylated product. Depending on the substitution pattern, the 
yield was highest for para-substituted and lowest for ortho-substituted 
aryl halides. Most ortho-substituted aryl halides only produced the 
monoarylated product.
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