The furan approach to the synthesis of natural products having highly substituted cyclic ether moieties

Abstract

We describe the synthesis of useful building blocks towards the synthesis of many natural products bearing substituted cyclic ether moieties, using our previously described method we called “The Furan Approach” and which is based on singlet oxygen oxidation of a furan ring followed by an intramolecular oxa-Michael addition.

Keywords: oxacyclic compounds, furan, singlet oxygen, natural products, stereoselective synthesis

Introduction

Highly substituted cyclic ethers occur in many natural products exhibiting important biological activities. These units can be found in monocyclic as well as in polycyclic structures some of them are depicted in Figure 1. Due to the biological importance of these compounds, they have been the targets of numerous synthetic studies. In our research group we have developed a new methodology for the synthesis of oxacyclic compounds using furan as starting material. The scope and limitations of this very powerful methodology are being determined.

Results and discussion

We now report that using our method we can easily access the 2,6-disubstituted tetrahydropyran and 2,5-disubstituted tetrahydrofuran systems, which are advanced model intermediates towards the synthesis of the natural compounds depicted in Figure 1. It was anticipated that butanetriol (1) could be a common starting material for accessing the 2,6-disubstituted tetrahydropyran 13 (Figure 2) and 2,5-disubstituted tetrahydrofuran 22 (Figure 3).

Figure 1 Examples of biologically active natural products bearing substituted cyclic ether moieties.
The furan approach to the synthesis of natural products having highly substituted cyclic ether moieties

Figure 2 Reagents and conditions:
(i) Cyclohexanone, BF$_3$.OEt$_2$, Et$_2$O, 0°C to rt (97%)
(ii) PPh$_3$, Imid, I$_2$, THF (93%)
(iii) 4, bipy, nBuLi, THF, 0°C to rt (91%)
(iv) Dowex 50W-X8, MeOH, rt, 20h (89 %)
(v) TBSCI, Imid, DMAP, DMF, rt (97 %)
(vi) O$_2$, MeOH, rose Bengal, hv
(vii) Ac$_2$O, py, DMAP (97%, 2 steps)
(viii) TBAF, THF, rt (35%, 9; 45%, 10)
(ix) TBDPSCI, Imid, DMAP, DMF, rt (92 %)
(x) TBDPSCI, Imid, DMAP, DMF, rt (87 %)
(xi) LAH, BF$_3$.OEt$_2$ (86%

Figure 3 Reagents and conditions:
(i) Cyclohexanone, BF$_3$.OEt$_2$, Et$_2$O, 0 °C to rt (97%)
(ii) Swern (99 %)
(iii) 15, nBuLi, THF, 0 °C to -78 °C (91%)
(iv) H$_2$/ Pd Lindlar
(v) PPTs (66%)
(vi) Dowex 50W-X8, MeOH, rt, 20h (80 %)
(vii) TrCl, pyr, DMAP, DMF, rt (82 %)
(viii) TBDPSCI, Imid, DMAP, DMF, rt (85 %)
(ix) O$_2$, MeOH, rose Bengal, hv
(x) Ac$_2$O, py, DMAP (77%, 2 steps)
(xi) TBAF, THF, rt (98%)
(xii) LAH, BF$_3$.OEt$_2$ (86 %)

Thus protection of the C1, C2-hydroxyl groups of 1 with cyclohexanone afforded alcohol 2$^\text{29}$ (97%) easily converted into iodide 3$^\text{20}$ in 93% yield. Lithiation of furan 4 and reaction with 3 afforded the alkylated furan 5$^\text{20}$ (91%). Removal of the cyclohexylidene group of 5 using Dowex 50W-X8 in methanol,$^\text{20}$ gave diole 6$^\text{20}$ in 89% yield. The hydroxyl groups of 6 were protected as silyl ethers affording furan 7.$^\text{28}$ Oxidation of 7 with singlet oxygen followed by treatment with acetic anhydride in pyridine, afforded butenolide 8$^\text{28}$ in 97% yields (2 steps). Treatment of 8 with TBAF led to lactones 9$^\text{28}$ and 10$^\text{28}$ in 35 and 45% yield respectively.

Protection of the hydroxyl group of 9 followed by opening of the lattice ring afforded tetrahydropyran 11$^\text{28}$ in 80% overall yield from the aldehyde 14 ($^\text{28}$ Figure 3) which has a side chain one carbon shorter than its homologue$^\text{20–31}$ ($^\text{28}$ Figure 2). Swern oxidation of alcohol 2 afforded aldehyde 14$^\text{28}$ in 99% yields.

Treatment of aldehyde 14 with the lithium derivative of alkyn 15 gave a mixture of epimeric propynyl alcohols which were hydrogenated over lindlar catalyst$^\text{22,23}$ to provide a mixture of diastereoisomeric (Z)-alkenes which upon treatment with catalytic pyridinium toluene$^\text{-p-}$ sulfonate (PPTS) gave the desired furan ring in 66% overall yield from the aldehyde 14. Removal of the cyclohexylidene group of 16$^\text{28}$ using Dowex 50W-X8 in methanol$^\text{20}$ gave diole 17$^\text{28}$ in 80% yield. The primary hydroxy group of 17 was selectively protected as trityl ether and the secondary hydroxyl group as silyl ether affording furan 19.$^\text{28}$ The stage was now set for the oxidation of 19 with singlet oxygen followed by treatment with acetic anhydride in pyridine which afforded butenolide 20$^\text{28}$ in 77% overall yield. Treatment of 20 with TBAF led to lactone 21$^\text{28}$ in 98% yields. Finally, opening of lactone 21 with LAH afforded tetrahydrofurran 22.$^\text{28}$ Compound 22 can be considered as building block towards the synthesis of the natural products bearing a THF moiety depicted in Figure 1.

Conclusion

In conclusion, we have demonstrated that using racemic butanetriol we can apply the “Furan approach” to the synthesis of useful building blocks towards the synthesis of many natural products. As both enantiomers of butanetriol are commercially available, work is now in progress towards the enantioselective synthesis of the natural products described in Figure 1.

Acknowledgements

The work of the NMR and MS divisions of the research support services of the University of Vigo (CACTI) is gratefully acknowledged. Alioune Fall, Ousmane Diouf, Abdou Salam Sall and Mohamed Gaye thank the University Cheikh Anta Diop (Dakar) for financial support.

Conflict of interest

The author declares no conflict of interest.

References

The furan approach to the synthesis of natural products having highly substituted cyclic ether moieties

28. All new compounds exhibited satisfactory 1H and 13C NMR, analytical, and/or high resolution mass spectral data.

