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Mitigating climate change impacts on agriculture
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Abstract

Artificial Intelligence (AI) and Machine Learning (ML) have introduced a favorable
opportunity in the response to climate change. This review aims to highlight the use of
artificial intelligence and machine learning for crop improvement under current climate
change condition. These technologies have many opportunities and are very useful in the
actualization of climate policies and decision without limitations on various parameters
like improvement in spatial detail of climate models and the allocation of resources for
crop improvement. These algorithms identify stipulations in extensive datasets and thus
enhance foretelling of several climate parameters including frequency of extreme weather,
rate of sea level rise and other climate issues. Al systems and ML systems also participate
in environmental impact assessments such as the measurement of deforestation, loss of
biodiversity, and carbon emissions. Al is essential to precision agriculture, optimizing
resource allocation and boosting crop yields. Al and ML is very useful for the identification
of climate smart genotypes, hence help in crop improvement. The prospects of Al and ML
adoption into the climate science domain are bright. For global climate science objectives
to be realized, Al and ML integration should be harnessed through different disciplines,
appropriate data ecosystem and ethical standards.
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Introduction

It is widely acknowledged that tackling climate change ought to be
considered the most important challenge today. Climate change refers
to the noticeable change in average weather patterns such as rainfall
and warmth, averaged over long periods of time. In recent decades,
however, it has been shown that active interference in the climate of
the Earth’s environment resulting in harmful global climate change
can be halted due to people’s aggressiveness. The increasing levels of
CO, are predicted to result in crop fertilization, as the levels of energy
needed in the warmer environment will be lower. While it could be
said that climate change enhanced changes in the twentieth century
affected countries in more of a positive light until 1980, these trends
were further maintained by developed countries. This perspective
then began to shift, such that latter developed nations began to bear
these costs. In the 21st century, however, this is predicted to change
so that developing as well as wealthy nations will sustain altercations
by climate change.'

In the context of climate change agriculture is faced with
the multifaceted problem of altered rainfall distribution, mean
temperature, and extreme weather events, among others. Such factors
as floods and droughts have a great deal of negative consequence on
soil erosion. In addition, climate change modifies both the equilibrium
of plant diseases and pests, as well as the amount of carbon dioxide
and length of the growing seasons of crops. The other challenge is the
rising sea levels. The temperature variation and the intensity of heat
waves or cold snaps, the extremes of which crops and their yields
are very sensitive to, are also a problem. The effect is determined by
the stage of development of the plant in relation to the timing of the
exposure to these extremes. Making matters worse, they aggravate
the already difficult situation within cropping areas where water
availability is limited, and rains are erratic, hence their irrigation
strategies are unpleasant. Due to the increased uncertainty in rainfall
amounts, farmers find it challenging to make productive decisions.'

Artificial Intelligence as we know it is revolutionizing many
sectors, for instance we could mention the science of the improvement
of cultivated plants. Artificial intelligence (Al) is widely recognized
for its exceptional ability to examine and identify patterns within large
datasets.> We explore the wide potential of Al technology in various
aspects of plant breeding, including data collection, exploring new
genetic materials preserved in seed storage, and plants producing
try to identify the relationship between structure and phenotype to
expedite the development of draught crops.® This approach will allow
for the creation of crop varieties that are well-suited to the anticipated
climatic conditions of the future.!

Additionally, these Al tools can enhance crop traits by enhancing
the precision of gene editing technology to better predict the effect
of specific genetic mutations on the associated plant traits. In
addition, due to the advancement of Al assisted breeding methods,
it will enhance the efficiency of precision breeding focusing on
achieving localized optimizations for farming. They can plan better
combinations for planting multiple crops in close proximity to one
another or for alternating crops to make agriculture more sustainable
and boost scientific yield in real-world greenery context.* Climate
change effect the morpho-biochemical and molecular processes of
economically important crop species. Therefore, the current review
highlights the role of Al and ML for crop improvement under current
climate change.

Methods

Data were collected through different databases: SciVerse Scopus,
Scientific Electronic Library Online (SciELO), the Academic Search
Tool (Scholar Google), etc. The search was developed using the
subject descriptor, Al, ML, climate change, impact of climate change
on agriculture, the role of Al and ML for crop improvement, etc.,
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Selected studies

Role of Al (artificial intelligence) for crop improvement

Alemploysmultiplemethodologies,suchasmachinelearning,image
recognition, and language processing, to drive agricultural productivity
and efficiency.” Machine learning programs sort through huge sets
of data to forecast weather, schedule irrigation for optimal results,
and identify diseases in crops before they cause widespread damage.
Image recognition systems can identify plant illness, infestation by
pests, and nutritional deficiency through robotic monitoring systems.*
Al systems also use machine learning techniques to learn from
patterns in the data to enhance their performance over time.’
Artificial intelligence (Al) is being used to rapidly create new plant
types by combining large-scale genetic and trait analysis with modern
breeding method (Figure 1).5"!
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Figure | Applications of Al and ML for Crop improvement.®*'!

Artificial intelligence (Al) in the domain of crop development is
a major driving force and is being used to exploit high-throughput
phenotyping and gene function analysis. Convenient and high-
throughput methods were used to obtain very large amounts of
phenotypic and genetic information from big farming and breeding
populations. This huge dataset is the possibility for Al to be synthesized
with several resources including crop phenotypic diversity, SNP
Polymorphisms, QTL analysis, GWAS (whole genome sequencing),
genome selection, and genome sequencing. Al systems are being used
to predict crop phenotype through WGS while Al-fueled computations
and model training make way for new breeding techniques.'>"'* Thus,
Al integrated with phenomics and genomics techniques will likely
bring about fast gene discovery related to agricultural phenotypes,
thus accelerating crop development projects.!

Al-driven crop genomics and phenomics

Crop geneticists are setting out to find out more about the genetic
information that is involved in plant phenotypes and to investigate
the mechanisms known from molecular biology that lead to these
characteristics, via the use of scientific data and bioinformatics. Al
is a doorway to methodologies for solving complex biological issues
such as metabolomics and proteomics, genomics, transcriptomics,
and systems biology.! Improvements in technology have made it
less complex and have increased the accuracy of identifying genetic
differences and observable traits in plants, enabling the extraction of
useful information from intricate datasets. Scientists, on the other
hand, are on the verge of utilizing Al to analyze comprehensive
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chemical process datasets that will facilitate learning of molecular
modifications in the course of non-living environmental strains.®'®

Scientists have employed Al and its generated models to manipulate
the switch of records from basic DNA to bodily expressed trends,
enabling them to research ability variations in herbal populations.'
Specifically, Al can be useful resource breeders in reading genetic
locations to enhance agricultural output through activating genetic
algorithms and assisting huge-scale crop trait dimensions in both
discipline and controlled settings,'” further on, Al can be easily
applied to biological information analyses and genome sequencing
analyses to interpret several molecular structural components,
including transcription factor binding sites.”” Extensive RNA that isn’t
translated, small RNA-based regulators, genetic collaborations, genes
encoding for proteins, selective RNA molecule sites,?! and controlling
DNA segments.'**

Cutting-edge crop breeding programs collect these vast datasets and
allow them to utilize all the diversity of genetic and trait information to
identify new genes linked to specific characteristics. Luckily, artificial
intelligence is the one that has pioneered a new era of data analysis and
computation. Now, it is possible to simultaneously investigate massive
datasets using it.! Furthermore, using AI to explore connections
between potential genes and regulatory elements offers a new method
to identify previously overlooked genes with potential for significant
agricultural progress.'”? Artificial intelligence is becoming essential
for collecting, examining, integrating, and overseeing genetic and
trait information to enhance the ability of crops to withstand climate
change (Table 1).*

Table | Successful Application of Al (Artificial Intelligence) in Plant Breeding

Sr.No.  Crops Technologies used Trait studied
Best Linear Unbiased Pre-harvesting
| Soybean Prediction (BLUP) and yield
4 Neural Networks (NNs) performance
Kemel Methods of plant®
Salt-Stress
Tolerance
Artificial Neural -

2 Mustard Plant Networks (ANN) and yield
Performance
of plant?

Oil content

3 Aiwain Artificial Neural mhplzil:atl and

! Networks (ANN) prysiea
properties of
Callus?
Neural networks (NN’s) Salt-Stress
Deep Neural Networks Tolerance
4 Corn (DNN’s) and yield
Convolution Neural Performance

Networks (CNN's) of plant?®%

Genome selection and predictive breeding

Al intelligence is further enhancing the accuracy and pace at which
the development of crops is carried out which appeals for the use of a
new data-driven agricultural approach, the writing of Algorithms for
breeding crops. From this position we critically evaluate the impact
of genomic prediction models mpsoyDNGP (multi-parent soybean
deep neural genomic prediction) on the process of crop breeding. We
discuss their potential, difficulties and their present-day application. It
is recommended that feasible strategies to overcome presently existing
challenges such as enhancing parent choice, accurately predicting the
combined effects of multiple traits and genes, creating interpretable
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deep learning and considering environmental factors be employed.
The researchers expect to further comprehend Al’s capabilities in
genetic prediction while seeking to broaden the understanding of
Al in agriculture, in particular genomic predictions. We encourage
additional research employing artificial intelligence in a manner that
is sustainable and just to help tackle challenges of the food system.?!
However, a lot of time involved in the traditional process of breeding
crops could be potentially cut down through the application of
Al techniques. In a span of one season, Al models can be used to
make predictions on aspects of the crop that prevents breeders from
extending their work for multiple seasons. The breeding procedure
will change significantly because AI will no longer be limited to
making accurate predictions using vast genetic information.*

Evolution of genome prediction

The researchers expect to further comprehend Al’s capabilities
in genetic prediction while seeking to broaden the understanding of
Al in agriculture, in particular genomic predictions. We encourage
additional research employing artificial intelligence in a manner that
is sustainable and just to help tackle challenges of the food system.
Deep learning technologies have provided a significant breakthrough
in genetic selection. For instance, DeepGS (Deep Learning Genomic
Selection) offers more precise phenotypic value selection, which
enhances conventional techniques like rBLUP.** By integrating
multi-omics data from plants and employing a deep neural network
with a stacked structure of hierarchy for adaptive feature learning,
DNNGP sets itself apart. This model is a useful tool to handle breeding
data at many sizes, provides better prediction accuracy, and computes
more quickly than conventional techniques.* The recently developed
SoyDNGP (an advanced webserver designed to utilize the power
of convolutional neural network-based models for the prediction of
agronomic traits in soybean) model?' is another example in which
deep learning approaches are applied to genomics prediction in the
context of crop breeding. Overall SoyDNGP is a major step forward
in genome-wide variation data analysis.’!

Al for predicting climate impact on crop yield

Agriculture is deeply intertwined with the environment.
Conventional farming practices contribute to greenhouse gas
emissions, deforestation, soil erosion, and water contamination.
By adopting sustainable methods like conservation agriculture,
agroforestry, and precision farming, we can mitigate agriculture’s
environmental impact and foster sustainable land and resource
management. Climate change is marked by increased unpredictability.
To bolster resilience against climate-related challenges, farmers must
adapt. Strategies such as planting drought-resistant crops, optimizing
irrigation, and employing climate-smart technologies can help
mitigate losses and ensure continued production.’® Climate-smart
agriculture (CSA) is poised to revolutionize the sector through the
integration of Artificial Intelligence (AI). This emerging paradigm
positions Al as a key tool in addressing climate change challenges.
This paper explores the interplay between Al and CSA research,
focusing on AI’s potential to enhance adaptation strategies in smart
agricultural technologies. Agriculture is a major contributor to GHG
(Greenhouse Gass) emissions, primarily methane from livestock
and nitrous oxide from fertilizers and soil management. CSA aims
to mitigate these emissions by promoting practices that reduce GHG
release and enhance carbon sequestration in soils and vegetation. This
includes precision nutrient management, agroforestry, conservation
agriculture, and renewable energy use.’¢?

Al-powered systems can analyze crop images to identify diseases,
nutrient deficiencies, and pest infestations. By using computer vision
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and machine learning, Al detects visual patterns linked to crop health
issues, enabling farmers to take early action and apply targeted
treatments, reducing crop losses and optimizing resource use. Al is
essential to precision agriculture, optimizing resource allocation
and boosting crop yields. Al algorithms analyze data from sensors,
drones, and satellites to provide insights into soil conditions, weather,
and crop growth. This information allows farmers to tailor irrigation,
fertilization, and pesticide applications to specific field areas,
minimizing waste and maximizing productivity.*’

Autonomous equipment precisely performs planting, harvesting,
and weeding, enhancing efficiency and reducing manual labor. In
livestock farming, robots automate feeding, monitoring, and milking,
ensuring consistent and optimal care. Al aids in livestock health and
welfare monitoring. Sensors and cameras collect data on animal
behavior, feed intake, and health metrics. Al algorithms analyze this
data, enabling early disease detection, prediction, and optimized
feeding and breeding. This improves animal welfare, boosts
productivity, and lowers veterinary expenses. Al aids in environmental
monitoring, assessing soil health, water quality, and biodiversity. Al
algorithms analyze sensor data to identify environmental risks and
optimize resource use. This promotes sustainable farming, reduces
environmental impact, and conserves natural resources.*’

Enhancing drought tolerance through Al (artificial
intelligence)

Using advanced technologies such as robotics, connected devices,
neural networks, and machine learning, farmers are using safe
solutions to more effectively deal with agricultural problems. This
technology supports, imagery analysis, and remote monitoring of the
weather for enhancing quality and increasing the number of harvests
for farmers.*

Early identification and forecasting

Drought can be detected early by Al algorithms through the
use of diverse sources such as weather conditions, satellite images
depicting vegetation’s health, and soil moisture data. Al brings hopes
and enables both authorities and farmers to take proactive measures
to lessen the detrimental effects of drought by issuing warnings and
making accurate predictions. Afterwards, Al can also estimate how
bad the drought will get and how long it will last, which allows
for timely action. This ability in forecasting is very essential in the
management of drought because it creates a time frame in which
efforts to mitigate crop losses, conserve water, and offer assistance to
the affected people can be made.'>*

Optimized water use

The artificial intelligence systems can enhance water management
in agriculture by effectively assessing the soil moisture content and
the crops’ water needs. Meanwhile, with the help of data, the Al also
helps the farmers to water their crops in an efficient manner reducing
water wastage and ensuring that ideal conditions for the crops are
maintained during the dry season.*

Just like virtual water managers for farmers, Al is able to
evaluate information on soil moisture, climate, and the crop growth
stage in order to determine how much water each crop needs. This
allows farmers to plan their irrigation periods appropriately, making
it possible to use the right quantity of water for each crop without
having too much or too little water which affects crop yield or quality
negatively.®
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Development of drought resilient crops

One high-quality manner wherein synthetic intelligence boosts the
speed of plant breeding is via analyzing genetic statistics to determine
sure characteristics with drought tolerance inside crops. By predicting
how different types of vegetation might perform all through varied
drought-like situations, Al allows breeders to broaden crop types
which have growth in water-pressured locations. This predictive
capability has the power of Al enhance growing drought-resistant
crops, therefore advancing agricultural resilience. In precis, artificial
intelligence is hired to test giant sets of genetic facts for drought
resistance genes. Once the ones genes are recognized, those can then
be implemented for the duration of breeding programs to expand
novel crop types. The change climatic scenarios which have been
modelled are studied with the aid of breeders to recognize what could
happen if the newly evolved type is cultivated with water scarcity
conditions. These determined genes can later be utilized to create new
crop varieties through breeding programs. Modeling one of a kind
climate scenarios with the help of Al lets in breeders to expect how
these new types will behave when there’s a lack of water, for you
to pick the maximum promising opportunities for cultivation in dry
areas.***

Weed management using Al (artificial intelligence)

Weeds are continually reducing farmers’ profits and crop yield.
Yield reductions from uncontrolled weeds growth have been proven
to be at levels that are as high as 50%. The production of dried
beans and corn will be reduced by as much as 50% in case of weed
uncontrolled growth. Wheat loses yield in a range between 48% and
60%. Soybeans experience a yield loss ranging between 8% and 55%.
Sesame crops suffer more significant losses, which range from 50%
to 75%. The degree of yield loss depends on the duration of exposure
of crops to weeds and the distribution pattern of weeds.*> Weeds are
dangerous, as they exacerbate storm flooding and can thrive after
fires. Some weeds are toxic and cause severe damage to the liver if
ingested. Other weeds grow bigger than crops because they absorb
all essential resources such as water, nutrients, and sunlight. Other
weeds are toxic, leading to allergic reactions or threatening public
health (Table 2).%

Table 2 Different Al techniques used in Weed Management.*

Sr. No. Techniques Uses Limitations
o High performance .
Artificial Neural tecghnFi) e it Requires data
| Networks (ANN), que, X in data in large
) ) reduces trails and
Genetic Algorithm. amount
errors
) ) Expensive, if we
Mechanical control It saves time and )
. use machine
2 of pests using remove all the constantly it
ROBOTICS, Sensor  weed that causes ) 4
) X X will reduce the
machine learning resistance . -
oil productivity
It detects ver: It only detects
Support Vector . . Y 4
3 . quickly if there is low level of
Machine R .
any stress in plant. Nitrogen
. It is very
High rate of weed expensive and
4 Unnamed Aerial can be detected it ;Iso requires
Vehicles (UAV) within a short q
. . vast human
period of time )
expertise
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Challenges and limitation

Agriculture has faced severe challenges like inadequate irrigation,
temperature fluctuations, depleting groundwater, food scarcity, and
wastage. The future of farming largely relies on the implementation
of different intelligent solutions. Although many researches are being
conducted, and some applications are present, the sector still faces a
lack of proper support. Agriculture is still in the nascent stage when
the real-life problems of farmers are addressed and self-governing
decision-making and predictive tools are being used. Applications
should be more responsive to changing conditions, allow for
instant decisions, and effectively utilize appropriate frameworks for
gathering related information about unlocking the full potential of Al
in agriculture.®

Another critical issue is that many agricultural Al tools are costly.
This should be lowered so that the access becomes wider to farmers.
By developing the open-source platform, it could be able to reduce
costs and faster adoption among the farmers with more use of the
tool. This technology may help boost crop yields while having a
crop produced season after season. The performance of an intelligent
system depends on the amount of data processed. Real-time Al systems
constantly process large volumes of data, and attention to necessary
or unexpected events must remain while the irrelevant information is
filtered. Domain experts need deep knowledge about the purpose of
the system to ensure that only important data is being used to optimize
the effectiveness and accuracy of the system.*

Future directions and opportunities

AdvancesinArtificial Intelligence (AI) and Machine Learning (ML)
offer unprecedented opportunities to understand, predict, and mitigate
climate change. The future holds immense potential for integrating
Al and ML into climate science. Continued progress in algorithms,
computing power, and data availability will refine models, enhancing
accuracy and precision. Advanced techniques like deep learning,
reinforcement learning, and ensemble modeling will further propel
climate modeling capabilities. The future of Al and ML in climate
research hinges on interdisciplinary collaboration. Traditionally
rooted in physical sciences, climate science now demands expertise
in computer science, data science, and ethics. Collaborative efforts
among climate scientists, computer scientists, statisticians, ethicists,
and policymakers will advance Al and ML model development,
application, and interpretation. This synergy fosters integration of
diverse datasets, methodologies, and perspectives, leading to more
comprehensive research. Cultivating a new generation of researchers
adept in both environmental science and data science is crucial >

While progress is substantial, challenges persist. Standardizing
data formats, ensuring model interpretability, addressing ethical
concerns, and integrating findings into policy remain priorities.
Researchers must establish data collection and sharing protocols,
enhance model transparency, uphold ethical guidelines, and
facilitate policy integration. Al and ML are transforming climate
change research beyond prediction. Enhanced models inform robust
adaptation plans and optimize resource allocation for mitigation
efforts. These technologies streamline decision-making, aligning
actions with sustainability goals. From disaster response to land-use
policies, Al and ML revolutionize climate change adaptation. Al can
also foster citizen engagement through citizen science initiatives. By
overcoming challenges and capitalizing on these technologies, we can
build a sustainable and resilient future.*
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Conclusion and recommendations

Al and ML are revolutionizing crop improvement by improving
genomic prediction, precision breeding, and intelligent agriculture.
Sophisticated models such as DeepGS and DNGP allow breeders
to probe intricate genetic interactions, which enhance the selection
of high-yield, stress-resistant, and disease-resistant crops. The
technologies also maximize resource management, improving
irrigation, fertilization, and pest management in precision agriculture.
Yet, hurdles like data standardization, model interpretability, and
ethics need to be overcome through inter-disciplinary collaboration
between biotechnologists, agronomists, and Al experts. Next-
generation developments in explainable Al, high-throughput
phenotyping, and real-time monitoring of environmental conditions
will further improve crop resilience, productivity, and sustainability,
assuring long-term food security under a changing climate.
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