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Introduction
It is widely acknowledged that tackling climate change ought to be 

considered the most important challenge today. Climate change refers 
to the noticeable change in average weather patterns such as rainfall 
and warmth, averaged over long periods of time. In recent decades, 
however, it has been shown that active interference in the climate of 
the Earth’s environment resulting in harmful global climate change 
can be halted due to people’s aggressiveness. The increasing levels of 
CO2 are predicted to result in crop fertilization, as the levels of energy 
needed in the warmer environment will be lower. While it could be 
said that climate change enhanced changes in the twentieth century 
affected countries in more of a positive light until 1980, these trends 
were further maintained by developed countries. This perspective 
then began to shift, such that latter developed nations began to bear 
these costs. In the 21st century, however, this is predicted to change 
so that developing as well as wealthy nations will sustain altercations 
by climate change.1

In the context of climate change agriculture is faced with 
the multifaceted problem of altered rainfall distribution, mean 
temperature, and extreme weather events, among others. Such factors 
as floods and droughts have a great deal of negative consequence on 
soil erosion. In addition, climate change modifies both the equilibrium 
of plant diseases and pests, as well as the amount of carbon dioxide 
and length of the growing seasons of crops. The other challenge is the 
rising sea levels. The temperature variation and the intensity of heat 
waves or cold snaps, the extremes of which crops and their yields 
are very sensitive to, are also a problem. The effect is determined by 
the stage of development of the plant in relation to the timing of the 
exposure to these extremes. Making matters worse, they aggravate 
the already difficult situation within cropping areas where water 
availability is limited, and rains are erratic, hence their irrigation 
strategies are unpleasant. Due to the increased uncertainty in rainfall 
amounts, farmers find it challenging to make productive decisions.1

Artificial Intelligence as we know it is revolutionizing many 
sectors, for instance we could mention the science of the improvement 
of cultivated plants. Artificial intelligence (AI) is widely recognized 
for its exceptional ability to examine and identify patterns within large 
datasets.2 We explore the wide potential of AI technology in various 
aspects of plant breeding, including data collection, exploring new 
genetic materials preserved in seed storage, and plants producing 
try to identify the relationship between structure and phenotype to 
expedite the development of draught crops.3 This approach will allow 
for the creation of crop varieties that are well-suited to the anticipated 
climatic conditions of the future.1

Additionally, these AI tools can enhance crop traits by enhancing 
the precision of gene editing technology to better predict the effect 
of specific genetic mutations on the associated plant traits. In 
addition, due to the advancement of AI assisted breeding methods, 
it will enhance the efficiency of precision breeding focusing on 
achieving localized optimizations for farming. They can plan better 
combinations for planting multiple crops in close proximity to one 
another or for alternating crops to make agriculture more sustainable 
and boost scientific yield in real-world greenery context.4 Climate 
change effect the morpho-biochemical and molecular processes of 
economically important crop species. Therefore, the current review 
highlights the role of AI and ML for crop improvement under current 
climate change.

Methods 

Data were collected through different databases: SciVerse Scopus, 
Scientific Electronic Library Online (SciELO), the Academic Search 
Tool (Scholar Google), etc. The search was developed using the 
subject descriptor, AI, ML, climate change, impact of climate change 
on agriculture, the role of AI and ML for crop improvement, etc., 
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Abstract

Artificial Intelligence (AI) and Machine Learning (ML) have introduced a favorable 
opportunity in the response to climate change. This review aims to highlight the use of 
artificial intelligence and machine learning for crop improvement under current climate 
change condition. These technologies have many opportunities and are very useful in the 
actualization of climate policies and decision without limitations on various parameters 
like improvement in spatial detail of climate models and the allocation of resources for 
crop improvement. These algorithms identify stipulations in extensive datasets and thus 
enhance foretelling of several climate parameters including frequency of extreme weather, 
rate of sea level rise and other climate issues. AI systems and ML systems also participate 
in environmental impact assessments such as the measurement of deforestation, loss of 
biodiversity, and carbon emissions. AI is essential to precision agriculture, optimizing 
resource allocation and boosting crop yields. AI and ML is very useful for the identification 
of climate smart genotypes, hence help in crop improvement. The prospects of AI and ML 
adoption into the climate science domain are bright. For global climate science objectives 
to be realized, AI and ML integration should be harnessed through different disciplines, 
appropriate data ecosystem and ethical standards. 
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Selected studies
Role of AI (artificial intelligence) for crop improvement

AI employs multiple methodologies, such as machine learning, image 
recognition, and language processing, to drive agricultural productivity 
and efficiency.5 Machine learning  programs  sort  through  huge  sets 
of data  to  forecast  weather,  schedule  irrigation  for optimal results, 
and identify diseases in crops before they cause widespread damage. 
Image recognition  systems  can  identify plant  illness,  infestation by 
pests, and nutritional deficiency through robotic monitoring systems.6 
AI systems also use machine learning techniques to learn from 
patterns in the data to enhance their performance over time.7 
Artificial intelligence (AI) is being used to rapidly create new plant 
types by combining large-scale genetic and trait analysis with modern 
breeding method (Figure 1).6,9–11

Figure 1 Applications of AI and ML for Crop improvement.6, 9–11

Artificial intelligence (AI) in the domain of crop development is 
a major driving force and is being used to exploit high-throughput 
phenotyping and gene function analysis. Convenient and high-
throughput methods were used to obtain very large amounts of 
phenotypic and genetic information from big farming and breeding 
populations. This huge dataset is the possibility for AI to be synthesized 
with several resources including crop phenotypic diversity, SNP 
Polymorphisms, QTL analysis, GWAS (whole genome sequencing), 
genome selection, and genome sequencing. AI systems are being used 
to predict crop phenotype through WGS while AI-fueled computations 
and model training make way for new breeding techniques.12–15 Thus, 
AI integrated with phenomics and genomics techniques will likely 
bring about fast gene discovery related to agricultural phenotypes, 
thus accelerating crop development projects.1 

AI-driven crop genomics and phenomics

Crop geneticists are setting out to find out more about the genetic 
information that is involved in plant phenotypes and to investigate 
the mechanisms known from molecular biology that lead to these 
characteristics, via the use of scientific data and bioinformatics. AI 
is a doorway to methodologies for solving complex biological issues 
such as metabolomics and proteomics, genomics, transcriptomics, 
and systems biology.1 Improvements in technology have made it 
less complex and have increased the accuracy of identifying genetic 
differences and observable traits in plants, enabling the extraction of 
useful information from intricate datasets. Scientists, on the other 
hand, are on the verge of utilizing AI to analyze comprehensive 

chemical process datasets that will facilitate learning of molecular 
modifications in the course of non-living environmental strains.6,18

Scientists have employed AI and its generated models to manipulate 
the switch of records from basic DNA to bodily expressed trends, 
enabling them to research ability variations in herbal populations.19 
Specifically, AI can be useful resource breeders in reading genetic 
locations to enhance agricultural output through activating genetic 
algorithms and assisting huge-scale crop trait dimensions in both 
discipline and controlled settings,19 further on, AI can be easily 
applied to biological information analyses and genome sequencing 
analyses to interpret several molecular structural components, 
including transcription factor binding sites.20 Extensive RNA that isn’t 
translated, small RNA-based regulators, genetic collaborations, genes 
encoding for proteins, selective RNA molecule sites,21 and controlling 
DNA segments.19,22

Cutting-edge crop breeding programs collect these vast datasets and 
allow them to utilize all the diversity of genetic and trait information to 
identify new genes linked to specific characteristics. Luckily, artificial 
intelligence is the one that has pioneered a new era of data analysis and 
computation. Now, it is possible to simultaneously investigate massive 
datasets using it.1 Furthermore, using AI to explore connections 
between potential genes and regulatory elements offers a new method 
to identify previously overlooked genes with potential for significant 
agricultural progress.19,23 Artificial intelligence is becoming essential 
for collecting, examining, integrating, and overseeing genetic and 
trait information to enhance the ability of crops to withstand climate 
change (Table 1).24 

Table 1 Successful Application of AI (Artificial Intelligence) in Plant Breeding

Sr. No. Crops Technologies used Trait studied

1 Soybean

Best Linear Unbiased 
Prediction (BLUP)  
Neural Networks (NNs) 
Kemel Methods

Pre-harvesting 
and yield 
performance 
of plant25

2 Mustard Plant
Artificial Neural 
Networks (ANN)

Salt-Stress 
Tolerance 
and yield 
Performance 
of plant26

3 Ajwain
Artificial Neural 
Networks (ANN)

Oil content 
in plant and 
physical 
properties of 
Callus27

4 Corn

Neural networks (NN’s) 
Deep Neural Networks 
(DNN’s) 
Convolution Neural 
Networks (CNN’s)

Salt-Stress 
Tolerance 
and yield 
Performance 
of plant28–30

Genome selection and predictive breeding

AI intelligence is further enhancing the accuracy and pace at which 
the development of crops is carried out which appeals for the use of a 
new data-driven agricultural approach, the writing of Algorithms for 
breeding crops. From this position we critically evaluate the impact 
of genomic prediction models mpsoyDNGP (multi-parent soybean 
deep neural genomic prediction) on the process of crop breeding. We 
discuss their potential, difficulties and their present-day application. It 
is recommended that feasible strategies to overcome presently existing 
challenges such as enhancing parent choice, accurately predicting the 
combined effects of multiple traits and genes, creating interpretable 
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deep learning and considering environmental factors be employed. 
The researchers expect to further comprehend AI’s capabilities in 
genetic prediction while seeking to broaden the understanding of 
AI in agriculture, in particular genomic predictions. We encourage 
additional research employing artificial intelligence in a manner that 
is sustainable and just to help tackle challenges of the food system.31 
However, a lot of time involved in the traditional process of breeding 
crops could be potentially cut down through the application of 
AI techniques. In a span of one season, AI models can be used to 
make predictions on aspects of the crop that prevents breeders from 
extending their work for multiple seasons. The breeding procedure 
will change significantly because AI will no longer be limited to 
making accurate predictions using vast genetic information.32

Evolution of genome prediction

The researchers expect to further comprehend AI’s capabilities 
in genetic prediction while seeking to broaden the understanding of 
AI in agriculture, in particular genomic predictions. We encourage 
additional research employing artificial intelligence in a manner that 
is sustainable and just to help tackle challenges of the food system. 
Deep learning technologies have provided a significant breakthrough 
in genetic selection. For instance, DeepGS (Deep Learning Genomic 
Selection) offers more precise phenotypic value selection, which 
enhances conventional techniques like rrBLUP.33 By integrating 
multi-omics data from plants and employing a deep neural network 
with a stacked structure of hierarchy for adaptive feature learning, 
DNNGP sets itself apart. This model is a useful tool to handle breeding 
data at many sizes, provides better prediction accuracy, and computes 
more quickly than conventional techniques.34 The recently developed 
SoyDNGP (an advanced webserver designed to utilize the power 
of convolutional neural network-based models for the prediction of 
agronomic traits in soybean) model21 is another example in which 
deep learning approaches are applied to genomics prediction in the 
context of crop breeding. Overall SoyDNGP is a major step forward 
in genome-wide variation data analysis.31

AI for predicting climate impact on crop yield

Agriculture is deeply intertwined with the environment. 
Conventional farming practices contribute to greenhouse gas 
emissions, deforestation, soil erosion, and water contamination. 
By adopting sustainable methods like conservation agriculture, 
agroforestry, and precision farming, we can mitigate agriculture’s 
environmental impact and foster sustainable land and resource 
management. Climate change is marked by increased unpredictability. 
To bolster resilience against climate-related challenges, farmers must 
adapt. Strategies such as planting drought-resistant crops, optimizing 
irrigation, and employing climate-smart technologies can help 
mitigate losses and ensure continued production.35 Climate-smart 
agriculture (CSA) is poised to revolutionize the sector through the 
integration of Artificial Intelligence (AI). This emerging paradigm 
positions AI as a key tool in addressing climate change challenges. 
This paper explores the interplay between AI and CSA research, 
focusing on AI’s potential to enhance adaptation strategies in smart 
agricultural technologies. Agriculture is a major contributor to GHG 
(Greenhouse Gass) emissions, primarily methane from livestock 
and nitrous oxide from fertilizers and soil management. CSA aims 
to mitigate these emissions by promoting practices that reduce GHG 
release and enhance carbon sequestration in soils and vegetation. This 
includes precision nutrient management, agroforestry, conservation 
agriculture, and renewable energy use.36–39

AI-powered systems can analyze crop images to identify diseases, 
nutrient deficiencies, and pest infestations. By using computer vision 

and machine learning, AI detects visual patterns linked to crop health 
issues, enabling farmers to take early action and apply targeted 
treatments, reducing crop losses and optimizing resource use. AI is 
essential to precision agriculture, optimizing resource allocation 
and boosting crop yields. AI algorithms analyze data from sensors, 
drones, and satellites to provide insights into soil conditions, weather, 
and crop growth. This information allows farmers to tailor irrigation, 
fertilization, and pesticide applications to specific field areas, 
minimizing waste and maximizing productivity.40

Autonomous equipment precisely performs planting, harvesting, 
and weeding, enhancing efficiency and reducing manual labor. In 
livestock farming, robots automate feeding, monitoring, and milking, 
ensuring consistent and optimal care. AI aids in livestock health and 
welfare monitoring. Sensors and cameras collect data on animal 
behavior, feed intake, and health metrics. AI algorithms analyze this 
data, enabling early disease detection, prediction, and optimized 
feeding and breeding. This improves animal welfare, boosts 
productivity, and lowers veterinary expenses. AI aids in environmental 
monitoring, assessing soil health, water quality, and biodiversity. AI 
algorithms analyze sensor data to identify environmental risks and 
optimize resource use. This promotes sustainable farming, reduces 
environmental impact, and conserves natural resources.40

Enhancing drought tolerance through AI (artificial 
intelligence)

Using advanced technologies such as robotics, connected devices, 
neural networks, and machine learning, farmers are using safe 
solutions to more effectively deal with agricultural problems. This 
technology supports, imagery analysis, and remote monitoring of the 
weather for enhancing quality and increasing the number of harvests 
for farmers.41,42

Early identification and forecasting

Drought can be detected early by AI algorithms through the 
use of diverse sources such as weather conditions, satellite images 
depicting vegetation’s health, and soil moisture data. AI brings hopes 
and enables both authorities and farmers to take proactive measures 
to lessen the detrimental effects of drought by issuing warnings and 
making accurate predictions. Afterwards, AI can also estimate how 
bad the drought will get and how long it will last, which allows 
for timely action. This ability in forecasting is very essential in the 
management of drought because it creates a time frame in which 
efforts to mitigate crop losses, conserve water, and offer assistance to 
the affected people can be made.15,43

Optimized water use

The artificial intelligence systems can enhance water management 
in agriculture by effectively assessing the soil moisture content and 
the crops’ water needs. Meanwhile, with the help of data, the AI also 
helps the farmers to water their crops in an efficient manner reducing 
water wastage and ensuring that ideal conditions for the crops are 
maintained during the dry season.44

Just like virtual water managers for farmers, AI is able to 
evaluate information on soil moisture, climate, and the crop growth 
stage in order to determine how much water each crop needs. This 
allows farmers to plan their irrigation periods appropriately, making 
it possible to use the right quantity of water for each crop without 
having too much or too little water which affects crop yield or quality 
negatively.45
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Development of drought resilient crops

One high-quality manner wherein synthetic intelligence boosts the 
speed of plant breeding is via analyzing genetic statistics to determine 
sure characteristics with drought tolerance inside crops. By predicting 
how different types of vegetation might perform all through varied 
drought-like situations, AI allows breeders to broaden crop types 
which have growth in water-pressured locations. This predictive 
capability has the power of AI enhance growing drought-resistant 
crops, therefore advancing agricultural resilience. In precis, artificial 
intelligence is hired to test giant sets of genetic facts for drought 
resistance genes. Once the ones genes are recognized, those can then 
be implemented for the duration of breeding programs to expand 
novel crop types. The change climatic scenarios which have been 
modelled are studied with the aid of breeders to recognize what could 
happen if the newly evolved type is cultivated with water scarcity 
conditions. These determined genes can later be utilized to create new 
crop varieties through breeding programs. Modeling one of a kind 
climate scenarios with the help of AI lets in breeders to expect how 
these new types will behave when there’s a lack of water, for you 
to pick the maximum promising opportunities for cultivation in dry 
areas.46–48

Weed management using AI (artificial intelligence)

Weeds are continually reducing farmers’ profits and crop yield. 
Yield reductions from uncontrolled weeds growth have been proven 
to be at levels that are as high as 50%. The production of dried 
beans and corn will be reduced by as much as 50% in case of weed 
uncontrolled growth. Wheat loses yield in a range between 48% and 
60%. Soybeans experience a yield loss ranging between 8% and 55%. 
Sesame crops suffer more significant losses, which range from 50% 
to 75%. The degree of yield loss depends on the duration of exposure 
of crops to weeds and the distribution pattern of weeds.35 Weeds are 
dangerous, as they exacerbate storm flooding and can thrive after 
fires. Some weeds are toxic and cause severe damage to the liver if 
ingested. Other weeds grow bigger than crops because they absorb 
all essential resources such as water, nutrients, and sunlight. Other 
weeds are toxic, leading to allergic reactions or threatening public 
health (Table 2).35

Table 2 Different AI techniques used in Weed Management.35

Sr. No. Techniques Uses Limitations

1
Artificial Neural 
Networks (ANN), 
Genetic Algorithm.

High performance 
technique, it 
reduces trails and 
errors

Requires data 
in data in large 
amount

2

Mechanical control 
of pests using 
ROBOTICS, Sensor 
machine learning

It saves time and 
remove all the 
weed that causes 
resistance

Expensive, if we 
use machine 
constantly it 
will reduce the 
oil productivity

3 Support Vector 
Machine

It detects very 
quickly if there is 
any stress in plant.

It only detects 
low level of 
Nitrogen 

4 Unnamed Aerial 
Vehicles (UAV)

High rate of weed 
can be detected 
within a short 
period of time

It is very 
expensive and 
it also requires 
vast human 
expertise

Challenges and limitation

Agriculture has faced severe challenges like inadequate irrigation, 
temperature fluctuations, depleting groundwater, food scarcity, and 
wastage. The future of farming largely relies on the implementation 
of different intelligent solutions. Although many researches are being 
conducted, and some applications are present, the sector still faces a 
lack of proper support. Agriculture is still in the nascent stage when 
the real-life problems of farmers are addressed and self-governing 
decision-making and predictive tools are being used. Applications 
should be more responsive to changing conditions, allow for 
instant decisions, and effectively utilize appropriate frameworks for 
gathering related information about unlocking the full potential of AI 
in agriculture.49

Another critical issue is that many agricultural AI tools are costly. 
This should be lowered so that the access becomes wider to farmers. 
By developing the open-source platform, it could be able to reduce 
costs and faster adoption among the farmers with more use of the 
tool. This technology may help boost crop yields while having a 
crop produced season after season. The performance of an intelligent 
system depends on the amount of data processed. Real-time AI systems 
constantly process large volumes of data, and attention to necessary 
or unexpected events must remain while the irrelevant information is 
filtered. Domain experts need deep knowledge about the purpose of 
the system to ensure that only important data is being used to optimize 
the effectiveness and accuracy of the system.35

Future directions and opportunities
Advances in Artificial Intelligence (AI) and Machine Learning (ML) 

offer unprecedented opportunities to understand, predict, and mitigate 
climate change. The future holds immense potential for integrating 
AI and ML into climate science. Continued progress in algorithms, 
computing power, and data availability will refine models, enhancing 
accuracy and precision. Advanced techniques like deep learning, 
reinforcement learning, and ensemble modeling will further propel 
climate modeling capabilities. The future of AI and ML in climate 
research hinges on interdisciplinary collaboration. Traditionally 
rooted in physical sciences, climate science now demands expertise 
in computer science, data science, and ethics. Collaborative efforts 
among climate scientists, computer scientists, statisticians, ethicists, 
and policymakers will advance AI and ML model development, 
application, and interpretation. This synergy fosters integration of 
diverse datasets, methodologies, and perspectives, leading to more 
comprehensive research. Cultivating a new generation of researchers 
adept in both environmental science and data science is crucial.50

While progress is substantial, challenges persist. Standardizing 
data formats, ensuring model interpretability, addressing ethical 
concerns, and integrating findings into policy remain priorities. 
Researchers must establish data collection and sharing protocols, 
enhance model transparency, uphold ethical guidelines, and 
facilitate policy integration. AI and ML are transforming climate 
change research beyond prediction. Enhanced models inform robust 
adaptation plans and optimize resource allocation for mitigation 
efforts. These technologies streamline decision-making, aligning 
actions with sustainability goals. From disaster response to land-use 
policies, AI and ML revolutionize climate change adaptation. AI can 
also foster citizen engagement through citizen science initiatives. By 
overcoming challenges and capitalizing on these technologies, we can 
build a sustainable and resilient future.50
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Conclusion and recommendations
AI and ML are revolutionizing crop improvement by improving 

genomic prediction, precision breeding, and intelligent agriculture. 
Sophisticated models such as DeepGS and DNGP allow breeders 
to probe intricate genetic interactions, which enhance the selection 
of high-yield, stress-resistant, and disease-resistant crops. The 
technologies also maximize resource management, improving 
irrigation, fertilization, and pest management in precision agriculture. 
Yet, hurdles like data standardization, model interpretability, and 
ethics need to be overcome through inter-disciplinary collaboration 
between biotechnologists, agronomists, and AI experts. Next-
generation developments in explainable AI, high-throughput 
phenotyping, and real-time monitoring of environmental conditions 
will further improve crop resilience, productivity, and sustainability, 
assuring long-term food security under a changing climate.
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