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Introduction
Testosterone is the primary androgen secreted by Leydig cells 

in men and ovaries in women at lower quantities. Testosterone is 
essential in the development of sexual characteristics in men and in 
maintaining the function of tissue in both sexes for all life, such as 
muscular development, strength, cardiac and brain function, body air, 
and sexual activity. Testosterone plasma levels in men decrease with 
progressive age,1 and in older men as aged ≥70 years, a significant 
reduction is observed. In me, at the age of 60 years, low testosterone 
levels were found. However, testosterone replacement therapy 
remains a topic of debate due to potential adverse effects, including 
cardiovascular risks and increased hematocrit levels, which require 
careful consideration. In the elderly, reductions in muscular strength 
and unfavorable body fat distribution due to low testosterone levels 
were observed.2 Low testosterone was associated with tiredness and 
fatigue. Nowadays, among middle-aged and older, the administration 
of testosterone is considered an anti-aging strategy.3 This article aims 
to evaluate the effect of testosterone on the central and peripheral 
nervous system. However, testosterone therapy may cause some 
adverse effects; in particular, its impact on cardiovascular events 
and mortality and the increase in hematocrit and hemoglobin levels 
should be considered. In contrast, physiological replacement therapy 
may improve physical function, mental wellness, and sexual activity 
density.4

Metabolism of testosterone

The effect of testosterone is complex because it acts on the neuron 
in different manners because it is metabolized in various hormones 
with distinct activity on tissues. Testosterone is metabolized in 
dihydrotestosterone (DHT) after the reduction of the 5α-reductase, and 
in 17β-estradiol after the effect of aromatase.5 DHT, the most potent 
androgen, is transformed in androstenedione and in 3α and 3β-diol 

metabolites, which have estrogenic effects. Testosterone and DHT (but 
all androgens as DHEAS or synthetic steroids) activate the AR that are 
widely expressed on neurons and stimulates oligodendrocyte, myelin 
repair, and axon regeneration.6 17β-estradiol and 3α-diol and 3β-diol 
stimulate mitochondrial function, anti-inflammatory effect, and exerts 
astrocytes protection.7 See figure 1 Testosterone also has important 
metabolic effects: it increases insulin activity, reduces central obesity 
in obese patients with type 2 diabetes,8 and reduces metabolic 
syndrome.9 Furthermore, many synthetic derivates from testosterone 
(such as oxandrolone, stanazolol, nandrolone, methenolone, etc.) are 
the androgen anabolic steroids that activate the AR and ER.

Figure 1 The metabolic way of testosterone. Testosterone, can be transformed 
in DHT, and 17 β-estradiol DHEAS is produced by adrenal gland. Testosterone, 
DHT and DHEAS activate AR receptors that simulate oligodendrocyte 
precursor cells and, consequently, their activation. Oligodendrocytes stimulate 
myelin formation and axon regeneration. 17 β-estradiol activates the ERs, 
which increases mitochondrial function, protects the astrocytes, and exerts 
an anti-inflammatory effect.
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Abstract

Testosterone is an essential hormone to maintain brain health and function. It also exerts a 
specific activity on the peripheral nervous system, maintaining skeletal muscle activity. The 
brain has a wide distribution of androgen receptors (AR) in the cortical area, hippocampus, 
hypothalamus, telencephalon, and amygdala. AR is also in the brainstem and spinal cord 
areas associated with sensory functions and in Purkinje cells of the cerebellar cortex. ARs 
were found on axons and dendrites, evidencing extranuclear activity. Testosterone regulates 
neuronal growth, differentiation, survival, or death through both genomic and nongenomic 
signaling pathways. Testosterone is metabolized in other hormones: in DHT acting on the 
hippocampus and 17β-estradiol, which explicitly affects dendritic arborization in females 
and males. Furthermore, testosterone stimulates oligodendrocytes and myelin formation, 
while estrogens stimulate mitochondrial activity, anti-inflammatory effect, and astrocytes 
protection.

Testosterone improves the survival of human neurons and astrocytes, acting directly on 
the mitochondrial membrane and inhibiting the reactive oxygen species. Furthermore, it 
exerts a protective effect on brain function, preventing Alzheimer’s disease, reducing the 
formation of amyloid β(Aβ) peptides in cortical neurons, and neurotoxicity. Furthermore, 
testosterone is an effective therapy to restore hippocampal function and related pathology, 
increasing adult neurogenesis within the dentate gyrus region of the hippocampus through 
an androgen-dependent pathway. Testosterone stimulates myelin regeneration, representing 
the primary therapeutic goal in demyelinating diseases. There is evidence that it can be 
effective in various neurodegenerative diseases, such as Parkinson’, SLA, and multiple 
sclerosis (MS). In this review, the effect of testosterone on neurons, demyelinating diseases, 
muscle strength loss, mood, and depression have been investigated.
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Effect of testosterone on the brain

Testosterone and other steroid hormones can cross the blood-
brain barrier BBB.10 The effect of testosterone on the brain is due to 
the extensive-expression in the brain of AR, which was detected in 
the cortical area, hippocampus, hypothalamus, telencephalon, and 
amygdala.11 ARs are also expressed in the brainstem and spinal cord 
areas and the cerebellar cortex.12 Testosterone and its derivatives 
effectively activate the androgen receptor (AR) on neurons, dendrites, 
myelin, and astrocytes. Androgens stimulate neuronal growth, 
differentiation, and death.13 The loss of AR function could contribute 
to the development of neurodegenerative diseases.14,15 ARs were found 
on axons and dendrites, evidencing extranuclear activity.16 Figure 2. 

The brain is an androgen-dependent organ, and its effect its function 
is largely conditioned throughout life. In the neonatal male, it appears 
the effect of androgen on the hippocampus and DHT, but not estrogen, 
exerts a specific effect on dendritic arborization both in females and 
males17 that is blocked by AR antagonist.18 A neuropathological 
investigation conducted on postmortem patients of 80 years and older 
showed lower levels of testosterone in the brain correlated with age, 
while no changes of 17β-estradiol levels in the brain were observed.19

Figure 2 The activation of AR in neurons. The AR distribution is represented. 
AR are located on the dendrites, on neuron body cell, on oligodendrocytes 
on microglia. The activation of AR stimulates the neuronal body, dendrites 
arborization that increase the neural connection, the OPC and microglia that 
stimulates myelination and axon protection.

In animal models, it was demonstrated that testosterone, through 
the activation of AR, exerted a protective effect on brain function, 
preserving Alzheimer’s disease.20,21 In rats, testosterone administration 
determines an increased secretion of the non-amyloidogenic APP 
fragment, a reduced formation of Aβ peptides in cortical neurons,22 and 
reduced neurotoxicity.23,24 This process is mediated by the activation 
of AR and inhibited by flutamide, an androgen receptor antagonist.21 

Testosterone improves the survival of human neurons and astrocytes 
by stimulating mitochondrial activity and inhibiting reactive oxygen 
species production,25,26 reactive nitrogen species (NOS) generation,27 
and SIRT1 expression.28 These data demonstrate that testosterone 
is an effective therapy to restore hippocampal function and related 
pathology.29 Testosterone enhanced synaptic plasticity in rats, 
scavenging free radicals and increased the number of intact cells and 
the dendritic spine density in the hippocampal region.21 Neurogenesis 
occurs in adults, but the functional significance remains to be explained. 
Sex steroids play a fundamental role in adult neurogenesis. In rodents, 
testosterone stimulates adult neurogenesis within the hippocampus 
through an AR pathway.30 The potent regulators effect of androgen 
on adult neurogenesis in the hippocampus via the AR has also been 
demonstrated in other than the dentate gyrus.31 Neuroprotection is 

induced by androgens through the AR activation independently by 
estrogens.32 Androgens increase cell survival in the dentate gyrus, and 
this process can be blocked by the administration of flutamide, an AR 
antagonist.31

The neuroprotective effect of testosterone on the brain has 
been proposed as a complementary therapeutic intervention in 
neurodegenerative disease.33 Androgens induce neuroprotection 
through AR activation independently of estrogens.32 Androgens 
increase cell survival in the dentate gyrus, and this process can be 
blocked by the administration of flutamide, an AR antagonist.31 

Myelin regeneration is the essential therapeutic goal in demyelinating 
diseases.34 In Alzheimer’s disease (AD) the regulation of Aβ deposition 
is regulated by the activation of both AR and ER35 however, testosterone 
has a direct neuroprotective effect, independently by its conversion 
into estradiol.24,36 17β-estradiol substantially contributes improving 
the hippocampal function favouring the cleavage of APP37 and 
increasing BDNF secretion.38 Estradiol inhibits BACE1 expression39 
and induces α-APP secretion by activating the MAPK-signalling 
pathway independently of ER.40 Testosterone, methyl testosterone, 
and 17-beta-estradiol reduced neuronal death by 80-90%, and the 
anti-Aβ effect of testosterone is potentiated by estrogenic levels.41

Testosterone enhanced the synaptic plasticity increasing the 
number of new cells and the density of dendrites in the hippocampus,21 
and reduced the oxidative stress activating SOD and GSH-Px 
enzymes.42 The neurodegenerative process is strongly sustained 
by oxidative stress43 and by a  deregulation and hypofunction of 
N-methyl-d-aspartate (NMDA) receptor44,45 as observed in AD.46 The 
protective effect of testosterone on brain function was demonstrated 
in animal models preserving from AD.20,21 The proteins in the 
hippocampus,  p-NMDAR1, and  p-CaMK II, were correlated with 
reduced oxidative stress.42 The main action of testosterone on the 
brain is the effect against oxidative stress,26 and reduction in neuronal 
death by increasing eNOS activity and SIRT1 expression.28 A low 
serum testosterone level in men was associated with augmented Aβ 
deposition in brain tissue, predisposing to the development of AD47-52 
while a high testosterone level reduces the onset and development 
of AD.53 Higher free testosterone levels were associated with lower 
cerebral Aβ deposits in females. In males, free testosterone was 
positively related to hippocampal volume and significantly interacted 
with cognitive status.47,54 Estrogens contribute to the remyelination 
process in different manners55 in the clinical evaluation of the effects 
of testosterone should be considered.

Testosterone therapy in patients with AD

Androgen deprivation therapy (SDT) as observed in patients with 
prostate cancer (PC) demonstrated that men had a a higher risk of 
cognitive impairment and dementia56 and worsening depression57 
confirmed by a recent meta-analysis.58 HowEver, the effect of 
testosterone administration as a treatment to improve cognition 
in patients with AD remains still controversial. Many studies 
evaluated the effect of testosterone therapy in patients with AD21,59-74 
which are reported in Table 1. Some studies found positive effects 
of testosterone therapy on some cognitive function in normal and 
hypogonadal elderly men,60,62,64,72,75-76 while others had no conclusive 
results.61,62 The studies conducted on small groups of patients have the 
risk of many biases. Firstly, the dose of testosterone administration 
is the most critical point. The testosterone gel has a lower effect than 
intramuscular injection. Secondly, the plasma levels of other hormones 
evaluated (as 17β-estradiol, IGF-1) that significantly contribute to 
brain functions were not regularly evaluated and sometimes without a 
strong statistical analysis considering the various confounding factors. 
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Importantly, not all screening instruments for the early detection of 
Alzheimer’s disease and cognition function are appropriate to be a 

promising screening test for memory clinic testing for population 
screening77 See Table 1.

Table 1 Effect of testosterone therapy on AD and cognitive impairment

Authors Patients Age Study Therapy Duration Outcomes 

Resnick, 2017 
788 men, 
Impaired sexual 
function

65 RCT
T gel with a dose to 
maintain the physiological 
plasma level

4 years
No association with 
improved memory or other 
cognitive functions.

Wahjoepramono, 
2016 44 men  ≥50 yrs  RCT T gel 50 mg 24 weeks and 4 

weeks washout,
Significant improvement in 
general cognitive functioning.

Huang, 2016 308 men with 
low T. 60

RCT 
Multicenter 
study

T gel 7.5 g of 1% 36 months T administration did not 
improve cognitive function.

Asih, 2015 44, older men 61 ± 7.7 RCT transdermal T (50 mg/
day) 24 weeks

Significant increases in 
plasma androgens levels. No 
changes in plasma amyloid-
beta. Dementia is not 
investigated.

Cherrier, 2015 

351 men 
community. 37 
with MCI and 
low T

70.5 ± 8.2 RCT T gel (50 to 100 mg/day) 3 months
Modest improvement 
in verbal memory and 
depression symptoms 

Borst, 2014 60 hypogonadal 
men 70.8 RCT T-enanthate (125 mg/

week) 12 months
Small improvements in 
depressive symptoms and 
visuospatial cognition.

Young, 2010 26 young 62 
older 25-35 60-80 RCT GnRH agonist, T-gel T-gel, 

75 mg and 100 mg 6 weeks

Free T positively correlated 
to spatial cognition while 
estradiol negatively 
correlated with working 
memory

Emmelot-
vonk,2008 

237 healthy men 
with a low T level 60-80 RCT T undecenoate 80 mg 6 months

Cognitive function and bone 
mineral density did not 
change.

Vaughan, 2007 65 Healthy men RCT

200 mg of T every 2 
weeks with 5 mg of 
finasteride daily (T+F), or 
placebo

36 months
No clinically significant 
effect on tests of cognitive 
function.

Maki, 2007 15 normal men 66-87 RCT T enanthate (200 mg im 
every other week 3 months

Decreased verbal memory 
and altered relative activity 
in medial temporal and 
prefrontal regions.

Charrier, 2007 57 eugonadal 
men 67 ±11 RCT  T enanthate i.m. 50, 100 

or 300 mg/week 6 weeks No significant changes in 
memory.

LU, 2006 16 men with mild 
AD RCT T gel (75 mg) 24 weeks

T replacement therapy 
improved the quality of 
life in AD patients. T had 
minimal effects on cognition.

Haren, 2005 76 healthy men 60 RCT T undecanoate 80 mg 
twice daily 12 months

Not affect scores on 
visuospatial tests or mood 
and quality of life scales

Kenny, 2004 11 men with 
cognitive decline 80±5 RCT 200 mg every 3 weeks 12 weeks

No significant changes 
in behavior, function, 
depression, or cognitive 
performance

Tan, 2003 36 men with AD. 10 hypogonadal RCT Intramuscular T 200 mg 
every 2 weeks 12 months

ADAScog, MMSE, and CDT 
improved significantly in 
treated patients

O'Connors, 2001 30 healthy eugonadal men and 7 
hypogonadal men RCT 200 mg of T enanthate 

i.m. weekly 8 weeks

Increased T has a differential 
effect on cognitive function, 
inhibiting spatial abilities 
while improving verbal 
fluency

Cherrier, 2001 25 healthy men RCT T enanthate 100 mg 
weekly 6 weeks Short-term T administration 

enhances cognitive function

RCT, randomized controlled trial; AD, Alzheimer’s disease; T, testosterone; MCI, mild cognitive impairment; ADA Scog=Alzheimer’s disease Assessment Scale 
cognitive subscale; MMSE, mini mental status examination; CDT, clock drawing test; RCT, double-blind placebo-controlled study.
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Multiple sclerosis

In Multiple sclerosis (MS), which is an autoimmune inflammatory 
disease of the CNS and is characterized by neuronal demyelination with 
subsequent axonal dysfunction and paralysis. Testosterone appears 
to have a specific indication for the treatment of these alterations. 
Symptoms of MS range from loss of vision to neuromuscular disorders. 
Testosterone plays a significant role in the incidence and progression 
of MS, with a clear predominance in women.78 Estrogen and androgen 
therapy in MS, has shown encouraging results.79 A study conducted in 
10 men with MS with relapse remittent form (RRMS) demonstrated 
that testosterone exerted a neurotrophic effect on the brain, reducing 
atrophy and increasing the gray matter in the right frontal cortex. The 
cortical lesions and brain atrophy are correlated with mental disorders 
in RRMS.80 These data are of relevant importance for the clinical 
outcome of these patients. Still, unfortunately, only a few studies on 
this area have been conducted. 

ALS (amyotrophic lateral sclerosis)

ALS is characterized by the primary degeneration of upper (motor 
cortical) and lower (brainstem and spinal) motor neurons. Muscular 
atrophy is the consequence of neuron damage. During autopsy, it was 
found that lateral sclerosis refers to the lateral white matter of the 
funiculus in the spinal cord (degeneration of the corticospinal tract).81 
In a mouse model of ALS, it was found that testosterone compacts 
the myelin sheet.82,83 Neuronal apoptosis is a complex process that 
is not yet well understood. Spinal motor neurons degenerate with 
the reduction of muscle trophic factors, not only when the androgen 
levels are low but also when the IGF-1 level is significantly low.84 In 
animal models and humans it was observed the interactions between 
androgens and IGF-1.85 IGF1 sustains and increases the cellular effect 
of testosterone.

High doses of testosterone have a negative effect on the endothelial 
function of the aorta and erectile activity.69 Higher doses of androgen 
therapy exposure trigger persistent changes in BDNF expression.86 
Supraphysiological exposure to androgens exerts neurotoxic effects, 
increasing the intrinsic apoptotic pathway and alterations in neurite 
networks. There is a loss of neurite formation and a reduction of 
the total length of dendrites. Particularly in neurodegenerative 
diseases such as Alzheimer, there is the need for more robust clinical 
evidence. DHT seems more effective in the therapy of ALS because it 
increases the expression of IGF-1 in muscle, exerting myotrophic and 
neurotrophic effects. DHT treatment reduces the denervation at the 
neuromuscular junction and motoneuron loss, ameliorating clinical 
symptoms in ALS, and can be considered a therapy to improve the 
clinical outcome.87 ALS and its psycho-neuro-endocrinological 
sequelae should become an area of intensive study in the future.88 
Further studies on the effects of androgens in ALS should be explored 
because they can be of relevant help to the patients.

Effect on muscular strength

The anabolic effect of testosterone is due to increased muscle 
protein synthesis,89 stimulating satellite cell replication,90 inhibiting 
muscle protein degradation,91 and increasing neural growth. In elderly 
men, testosterone administration, after six months of therapy, induced 
an increase in total lean body mass and muscular strength92 and 
maximal voluntary strength in a dose-dependent manner but no effect 
on endurance.93 In aging, sarcopenia is due to fiber and mitochondrial 
dysfunction. Sarcopenia is associated with loss of muscular strength, 
physical disability, and reduced quality of life. The nervous tissue 
change is substantially involved in the lives of elderly people, and 
the type 2 fast fibers preferentially undergo denervation.  In the 

recovery process of these patients, reinnervation of the musculature is 
essential.94 In aging sarcopenia, denervation and muscle fiber atrophy 
are associated and characterized by motor unit loss and skeletal muscle 
alterations.95 Physical exercise at high intensity stimulates muscle 
reinnervation in the elderly.96 The association of androgen therapy 
significantly increases the neurodegenerative process in the skeletal 
muscles.33 The neuroregenerative process has also been observed in 
a Charcot-Marie-tooth patient after oxandrolone treatment for three 
months.97

Connor et al.,98 in a randomized, double-blind, placebo-controlled, 
crossover study, showed that testosterone associated with exercise 
compared to the exercise-placebo group for 12 weeks, with a two-
week wash-out, significantly increased muscle strength and physical 
function. Testosterone treatment to reach physiological plasma 
concentrations in middle-aged and older men can improve lean 
body mass, whilst exercise training enhances muscular strength.99 
particularly in neurodegenerative diseases such as Alzheimer, 
highlighting the need for more robust clinical evidence.

Effect on mood disorders and depression

In elderly men with a decline in testosterone levels, the incidence 
of depression increases100 it also occurs in young men.83 The Endocrine 
Society Clinical Practice Guideline established hypogonadism criteria 
requiring two-morning serum testosterone levels below 280–300 ng/
dl (9.7–10.4 nmol/L SI units).84 Testosterone is a neuroactive steroid 
hormone85 because it acts on DOPA receptors. Men with an average 
age of 64.5  years who have a total testosterone below 200  ng/dl 
(6.93  nmol/L SI units) compared to eugonadal men had a higher 
incidence of depressive disorders.101 In the Rancho Bernardo Study, it 
was found a significant association  between increasing severity 
of major depressive disorder  and low circulating levels of total 
testosterone in men.102 A systematic review with meta-analysis of case-
control studies demonstrated that males with depressive disorders had 
significantly lower plasma testosterone concentrations than healthy 
controls103 and, of particular interest, inversely associated with levels 
of bioavailable and free testosterone and dihydrotestosterone,102,104 not 
always considered in clinical trials. Furthermore, the loss of interest in 
most activities and low physical energy, and psychomotor retardation 
contribute to physical inactivity and depression.

An association between hypogonadism and depression has been 
observed. Observational, cross-sectional, or longitudinal studies 
reported an inverse relationship of depression scores in men with 
circulating testosterone levels.105 Men suffering from depression 
have lower circulating testosterone levels,102,106-107 and men with 
hypogonadism can manifest depressive symptoms.108 Hover Seidman 
et al.109 showed that low level of testosterone was more related to 
dysthimic disorders than depression. Morphologic and functional 
studies have confirmed the effects of sexual hormones in cerebral 
regions of interest men have lower circulating testosterone levels.110,111 
Barriere et al.110 demonstrated significant sex differences in gray 
matter concentration at the level of the gonadotropic axis, in the 
hypothalamus and pituitary but also within the hippocampus and the 
amygdala of intact animals. However, more recent studies evidenced 
that severe depressive symptoms do not respond to testosterone 
therapy.112 Handelsman et al.113 found that testosterone treatment can 
have minimal efficacy compared with a placebo, showing reasonable 
safety for up to 2 years. Generic mood elevation does not necessarily 
signify treatable depression. Depressed patients showed worse sleep 
than controls, but no significant difference in endogenous hormone 
levels was found, but the associations between endogenous sex 
hormones and depressive symptoms were inconclusive.114
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The benefits of testosterone replacement therapy in men with 
major depressive disorder and low testosterone levels in the clinically 
defined hypogonadal range remain uncertain and require further 
investigation.115 For Grossmann et al.116 testosterone treatment for 2 
years in a group of 1007 patients improved the health-related quality of 
life, better baseline physical function, greater sense of coherence, and 
fewer depressive symptoms. The mental health benefit was associated 
with weight and waist circumference reduction, but testosterone did not 
affect psychological and physical function or depressive symptoms. In 
men with minor or more depressive symptoms, testosterone treatment 
was associated with small but significant improvements in mood and 
energy. Testosterone substitution can positively influence the quality 
of life in older hypogonadal men, as has been demonstrated in large 
placebo-controlled trials.117

The benefits of testosterone replacement therapy in men with 
major depressive disorder and low testosterone levels in the clinically 
defined hypogonadal range remain uncertain and require further 
investigation.

Depression disorders are a complex clinical condition. The 
DSM-V (Diagnostic and Statistical Manual for Psychiatric 
Diseases) defined depressive disorders range from dysthymia/minor 
depression to major depressive disorder118  is more appropriate for 
this clinical evaluation. Furthermore, polygenic mechanisms are 
likely to be critical to the biological heterogeneity that influences 
testosterone-depression interactions. A genetically informed precision 
medicine approach using genes regulating testosterone levels and 
AR sensitivity  is required.115 The relationship between depressive 
symptoms and erectile dysfunction in middle-aged men is robust and 
independent of aging and para-aging confounders.119 The association 
between depression, testosterone levels, and sexual symptoms in 
males is difficult to assess due to numerous confounding factors, 
such as medical conditions, obesity, smoking, alcohol use, diet, and 
stress.  Testosterone and its metabolites act on many cerebral areas 
and modulate neurotransmission and mood disorders. In patients with 
severe depression or bipolar, testosterone therapy should be prescribed 
with caution because it can increase the risk of suicide attempters.120 

In conclusion, in hypogonadal men with dysthymic disorders, the 
therapy with testosterone can improve mood and mild depression, but 
in cases of severe depression, it should be used with caution. However, 
testosterone therapy has been associated with adverse cardiovascular 
events, such as increased risk of thrombosis, as well as psychiatric 
effects like mood swings and potential exacerbation of manic episodes 
in bipolar patients. These risks should be carefully weighed against its 
benefits in neurodegenerative and muscular conditions.

Conclusion
Testosterone significantly affects the brain and peripheral nervous 

system, maintaining neuronal health and functions. The action on the 
neurons is characterized by the presence of AR on the neuron body, 
dendrites, and axonal myelin. ARs are expressed in cortical area, 
hippocampus, hypothalamus, telencephalon, and amygdala, as well 
as in Purkinje cells of the cerebellar cortex. The neurodegenerative 
process is strongly sustained by oxidative stress in the brainstem and 
spinal cord areas associated with sensory functions. Testosterone 
and estradiol exert a strong anti-oxidative effect. Testosterone 
regulates neuronal growth, differentiation, and survival and 
stimulates oligodendrocytes, myelin repair, and axon regeneration. 
Myelin regeneration is the main objective of preventing and treating 
neurodegenerative diseases such as ALS and MS. Furthermore, 
testosterone inhibits the Aβ formation, exerting a protective effect on 
brain function and preserving Alzheimer’s disease.

Neurogenesis occurs throughout adulthood in select brain regions. 
Unfortunately, only a few clinical studies investigating the effect 
of androgen on neurodegenerative disease have been conducted, 
so it becomes hard to draw significant conclusions. In aging, loss 
of muscular strength and physical disability are associated with 
denervation and muscle fiber atrophy, and the therapy with androgen 
is essential to stimulate the recovery process of reinnervation in the 
musculature of these debilitated patients. The use of testosterone 
replacement therapy is suggested in men with mood disorders with 
low plasma androgen levels. Still, the sole purpose of improving 
major depressive symptoms is not recommended, according to current 
evidence. Moreover, in patients with bipolar disorder, testosterone 
therapy should be carefully evaluated because testosterone treatment 
may increase the risk of manic episodes and suicide attempts. In 
conclusion, testosterone and its derivatives exert many beneficial 
effects on brain and neuronal function, and they should be considered 
more in clinical practice.
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