

Higher bioavailability of Cu and Zn in the eastern part of Johore Causeway: Will the pattern remain the same beyond 2030?

Abstract

The purpose of this paper is to discuss Cu and Zn concentrations in *Perna viridis* soft tissues from the western and eastern parts of Johore Singapore Causeway. The polluted eastern portion of the Causeway had greater levels of Cu and Zn in different areas of the soft tissues of mussels than the western part. This indicated the eastern section of the semi-enclosed Causeway had higher Cu and Zn bioavailability than the western part. With some reports of high metal levels in the eastern part of the Causeway from 2015 to 2018, it is predicted that there will be a plausible constant source of anthropogenic metal contamination in the eastern part of the Causeway beyond 2030 if anthropogenic activities are not effectively controlled.

Keywords: different tissues, metal distribution, mussels, biomonitoring organs

Volume 6 Issue 4 - 2021

Chee Kong Yap,¹ Shih Hao Tony Peng,² Chee Wah Yap,³ Wen Siang Tan,⁴ Mohamad Saupi Ismail⁵

¹Department of Biology, Faculty of Science, Universiti Putra Malaysia, Malaysia

²All Cosmos Bio-Tech Holding Corporation, Malaysia

³MES SOLUTIONS, Bandar Kinrara, Malaysia

⁴Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia

⁵Fisheries Research Institute, Batu Maung, Malaysia

Correspondence: Chee Kong Yap, PhD, Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia,
Email yapckong@hotmail.com, yapchee@upm.edu.my

Received: July 10, 2021 | **Published:** July 26, 2021

Introduction

Between southern Johore (Peninsular Malaysia) and Singapore, the Straits of Johore are located. This research focuses on the Straits of Malacca because of its importance from an ecotoxicological standpoint.¹⁻⁴ The relevance of the Straits as a key culture site for the commercial green-lipped mussel *Perna viridis* was reported by Yap et al.⁵ This mussel species has been identified as a good biomonitor of heavy metal contamination because it meets many of the biomonitor's recommended criteria.⁶ The metal concentrations reported in mussel tissues are indicative of bioavailable metals in the test sites' coastal waters.⁷ Human activity such as fossil fuel, electrical generating plants, construction sites, and shipping terminals have been documented along the Straits.

The goal of this study was to analyse the distribution of Cu and Zn in different areas of *P. viridis*, as well as to discuss the pattern of metal bioavailability between the eastern and western sides of the Johore Causeway beyond 2030.

Materials and methods

The present data of Cu and Zn were cited from Yap et al.² in different tissues of *P. viridis* from western (4 sites) and eastern (4 sites) parts of Johore Causeway, with sampling taking place in 2004-2005. Whereas, another set of data were cited from Yap et al.³ from almost the same sites in the western (3 sites) and eastern (3 sites) parts of Johore Causeway, with sampling taking place in 2006.

Results and discussion

Cu and Zn concentrations in different soft tissues of *P. viridis* cited from Yap et al.^{2,8} from the western and eastern sides of the Johore

Causeway are shown in Table 1. In general, Cu and Zn values were greater in the Eastern part half than Gelang Patah in the western section of the Johore Causeway. There were varied levels of heavy metal concentration in different parts of the mussel soft tissues. Metal bioavailability, season, and mussel physiology may all impact variations in metal concentrations in mussels.⁹ The change in metal concentrations could also be explained by variations in water salinity and temperature, according to Wong et al.¹⁰

Table 1 Mean concentrations (µg/g dry weight) of heavy metals in the different soft tissues of *Perna viridis* originating from the western and eastern portions of the Johore Straits separated by the Johore Causeway

		West	East	References
Foot	Cu	6.2	10.6	Yap et al. ⁶
		7.42	8.73	Yap et al. ²
	Zn	52.5	67.1	Yap et al. ⁶
		62.9	56.9	Yap et al. ²
Gill	Cu	11.1	12.1	Yap et al. ⁶
		8.92	13.4	Yap et al. ²
	Zn	95.8	123	Yap et al. ⁶
		102	124	Yap et al. ²
Gonad	Cu	10.8	10.6	Yap et al. ⁶
		7.34	9.23	Yap et al. ²
	Zn	84	77.3	Yap et al. ⁶
		76.1	76.2	Yap et al. ²

Table Continued...

		West	East	References
Mantle	Cu	11	11.9	Yap et al. ⁶
		6.94	11.4	Yap et al. ²
	Zn	63.3	71.9	Yap et al. ⁶
		64.5	62.4	Yap et al. ²
Muscle	Cu	5.2	8.4	Yap et al. ⁶
		5.51	8.45	Yap et al. ²
	Zn	65.9	81.4	Yap et al. ⁶
		69.6	85.1	Yap et al. ²
Remainder soft tissues	Cu	12	15.6	Yap et al. ⁶
		10	13	Yap et al. ²
	Zn	113	101	Yap et al. ⁶
		84.9	99	Yap et al. ²

Note: *Values in bold are metal concentrations that are higher in the eastern part than in the western part. Data cited from Yap et al.² collected in 2005, and Yap et al.⁶ collected in 2006

The soft tissues of *P. viridis* from the eastern part of the causeway contained higher amounts of Cu and Zn, indicating that the eastern part of the causeway had higher Cu and Zn bioavailability than the western part.⁷ This is most likely due to anthropogenic activity including petrochemical plants, land reclamation, urbanisation, shipping, and other industrial operations.¹¹

Pattern beyond 2030

According to many recent reports, the eastern side of the Johore Causeway will continue to receive anthropogenic inputs. The contamination in Pasir Gudang was reported by Yap et al.¹² in the local newspaper as the Kim Kim River chemical waste contamination. Yap et al.¹³ reported greater Cu bioavailability and contamination in three mollusks, including *P. viridis*, at Kg. Pasir Puteh. Mahat et al.¹⁴ reported Cu levels in the whole soft tissues of *P. viridis* obtained from Kg. Pasir Puteh ranged from 11.2-13.8 mg/kg dry weight in 2015, compared to 20.1 mg/kg dry weight for mussels collected from the same site in 2000.¹⁵ When comparing the 2015 samples to those from 2000, the level of Cu in the mussels is lower. Mohamat-Yusuff et al.¹⁶, on the other hand, found a moderate degree of Cu contamination in *P. viridis* at Kong Kong Laut. Previously, Cu levels in the mussel soft tissues collected from the eastern side of the Causeway had been observed to be increased in the mussels collected in 2000,^{11,15,17} 2005 (Yap et al., 2006a), 2006⁸ and 2009,¹⁸⁻²⁰ and in the sediments.^{1,4,21,22} Because the eastern parts of the Johore Causeway, such as Kg. Pasir Puteh and Kg. Masai, are close to a busy harbour and industrial sectors near Pasir Gudang, the likelihood of anthropogenic heavy metal pollution in this area beyond 2030 is projected to be considerable. As a result, future efficient metal pollution control management in the eastern portion of the Straits of Johore should be in line with Goal #12 of the United Nations Sustainable Development Goals (UNSDGs), which mentions the economy, the environment, and the society.^{23,24}

Concluding remarks

In general, higher levels of Cu and Zn were found in most of the soft tissues of *P. viridis* from the east coast of The Straits of Johore than the west coast, indicating that the eastern half of the Causeway

has higher Cu and Zn bioavailability than the western part. With some reports of high metal levels in the eastern part of the Causeway from 2015 to 2018, it is predicted that there will be a plausible constant source of anthropogenic metal contamination in the eastern part of the Causeway beyond 2030 if anthropogenic activities are not effectively controlled.

Acknowledgments

None.

Funding

None.

Conflicts of interest

None.

References

1. Wood AK, Ahmad Z, Shazili NA, et al. Geochemistry of sediments in Johore Strait between Malaysia and Singapore. *Cont Shelf Res.* 1997;17(10):1207–1228.
2. Yap CK, Ismail A, Edward FB, et al. Use of different soft tissues of *Perna viridis* as biomonitor of bioavailability and contamination by heavy metals (Cd, Cu, Fe, Pb, Ni and Zn) in a semi-enclosed intertidal water, the Johore Straits. *Toxicol Environ Chem.* 2006;88(4):683–695.
3. Yap CK. Mussel Watch in Malaysia: Past. Present and Future. Universiti Putra Malaysia Press. Serdang. 2012:137.
4. Maadin FS, Abdul Rahman MF, Abdullah Zawawi MA, et al. Copper and zinc accumulation in sediment at Straits of Johore. *Malay J Civil Eng.* 2016;28(3):314–322.
5. Yap CK, Ismail A, Tan SG. Can the byssus of green-lipped *Perna viridis* from the west coast of Peninsular Malaysia be a biomonitoring organ for Cd, Pb and Zn? Field and laboratory studies. *Environ Int.* 2003a;29(4):521–528.
6. Yap CK, Shahbazi A, Zakaria MP. Concentrations of heavy metals (Cu, Cd, Zn and Ni) and PAHs in *Perna viridis* collected from seaport and non-seaport waters in the Straits of Johore. *Bulletin of Environmental Contamination and Toxicology.* 2012;89(6):1205–1210.
7. Rainbow PS. Biomonitoring of heavy metal availability in the marine environment. *Mar Pollut Bull.* 1995;31(4–12):183–192.
8. Yap CK, Mohd Nasir S, Edward FB, et al. Anthropogenic inputs of heavy metals in the east part of the Johore Straits as revealed by their concentrations in the different soft tissues of *Perna viridis* (L.). *Pertanika J. Trop Agric Sci.* 2012;35(4):827–834.
9. Chan HM. A survey of trace metals in *Perna viridis* (L.) (Bivalve: Mytilacea) from the coastal water of Hong Kong. *Asian Mar Biol.* 1988;89:89–102.
10. Wong CK, Cheung RYH, Wong MH. Heavy metal concentrations in green-lipped mussels collected from Tolo Harbour and markets in Hong Kong and Shenzhen. *Environ Pollut.* 2000;109(1):165–171.
11. Yap CK, Ismail A, Tan SG, et al. The impact of anthropogenic activities on heavy metal (Cd, Cu, Pb and Zn) pollution: Comparison of the metal levels in the green-lipped mussel *Perna viridis* (Linnaeus) and in the sediment from a high activity site at Kg. Pasir Puteh and a relatively low activity site at Pasir Panjang. *Pertanika J Trop Agric Sci.* 2004b;27(1):73–78.
12. Yap CK, Tony Peng SH, Leow CS. Contamination in Pasir Gudang Area, Peninsular Malaysia: What can we learn from Kim Kim River chemical waste contamination? *J Hum Edu Devel.* 2019a;1(2):1–4.

13. Yap CK, Chew W, Cheng WH, et al. Higher bioavailability and contamination by copper in the edible mussels, snails and horseshoe crabs at Kampung Pasir Puteh: Evidence of an industrial effluent receiving site at Pasir Gudang Area. *Advancements Bioequiv Availab.* 2019b;2(5):BB.000548.2019.
14. Mahat NA, Muktar NK, Ismail R, et al. Toxic metals in *Perna viridis* mussel and surface seawater in Pasir Gudang coastal area, Malaysia, and its health implications. *Environ Sci Poll Res.* 2018;25(30):30224–30235.
15. Yap CK, Ismail A, Tan SG. Heavy metal (Cd, Cu, Pb and Zn) concentrations in the green-lipped mussel *Perna viridis* (Linnaeus) collected from some wild and aquacultural sites in the west coast of Peninsular Malaysia. *Food Chem.* 2004a;84(4):569–575.
16. Mohamat-Yusuff F, Yun LS, Wan ECK, et al. Profile of heavy metals level in catfish (*Hexanematichthys sagor*) and green mussel (*Perna viridis*) from Kong Kong Laut, Johor Straits. *Acta Biol Malaysia.* 2015;4:46–50.
17. Yap CK, Ismail A, Tan SG. Background concentrations of Cd, Cu, Pb and Zn in the green-lipped mussel *Perna viridis* (Linnaeus) from Peninsular Malaysia. *Mar Poll Bull.* 2003b;46(8):1043–1048.
18. Eugene Ng, Yap CK, Pauzi Zakaria M, et al. Assessment of heavy metal pollution in the Straits of Johore by using transplanted caged mussels. *Pertanika J Sci Tech.* 2013c;21(1):75–96.
19. Eugene Ng, YJ, Yap CK, Zakaria MP, et al. Depuration of trace metals in transplanted *Perna viridis* from polluted site at Kg Pasir Puteh to relatively unpolluted sites at Kg Sg.Melayu and Sg.Belungkor in the Straits of Johore. *J Ind Poll Contr.* 2013b;29(1):1–6.
20. Eugene Ng, Yap CK, Zakaria MP, et al. Trace metal concentrations in the different parts of *Perna viridis* collected from some jetties in the Straits of Johore. *Poll Res.* 2013a;32(1):9–19.
21. Yap CK, Edward FB, Tan SG. Heavy metal concentrations (Cu, Pb, Ni and Zn) in the surface sediments from a semi-enclosed intertidal water, the Johore Straits: Monitoring data for future reference. *J Sust Sci Manage.* 2010;5(2):44–57.
22. Zulkifli SZ, Ismail A, Mohamat-Yusuff F, et al. Johor Strait as a Hotspot for Trace Elements Contamination in Peninsular Malaysia. *Bull Environ Contam Toxicol.* 2010;84:568–573.
23. MITI. (Ministry of International Trade and Industry) Industry 4WRD: NATIONAL POLICY ON INDUSTRY 4.0. 2018.
24. Regoli, F., and Orlando, E. 1994. Seasonal variation of trace metal concentrations in the digestive gland of the Mediterranean mussel *Mytilus galloprovincialis*: Comparison between a polluted and a non-polluted site. *Ach. Environ. Contam. Toxicol.*, 27: 36–43.