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addresses the pivotal questions on the availability of animal models to 
develop therapeutic interventions for cerebral malaria (CM). Though, 
the research on experimental cerebral malaria (ECM) is published 
elsewhere, the applicability of such findings to human cerebral 
malaria (HCM) remains a myth owing to the differences in the 
fundamental mechanism of sequestration of parasites. Superficially, 
the mechanisms of parasite recognition looks cohesive between HCM 
and ECM, nevertheless, there are discrepancies in extrapolating the 
information to human. This review summarises the current research 
on ECM which foretells immunopathology as the main cause of CM, 
whereas HCM reveals the sequestration of parasitized (pRBCs) in 
brain.

Plasmodium falciparum infection in children and adults cause 
cerebral malaria (CM) which is a primary cause of death in both 
the groups. Research on CM is till elusive. Both animal and human 
studies reveal various complicated features for development of CM 
such as increased proinflammatory cytokines, adhesion molecules, 
cytoadherence of parasite infected erythrocytes, platelets, WBCs 
in microvasculature of CNS.1–3 Plasmodium falciparum infection 
in human causes hearing loss in adult,4 mental health disorders in 
children. Past evidences in people affected with CM suggests that 
even after recovery, brain injury in terms of cognitive deficits and 
neurological deficits are noted in almost 25% of patients.5 There 
are subtle differences in immune pathology of Plasmodium berghei 
ANKA (PbA) infected mice and Plasmodium yoelii 17XL (PyXL) 
infected mice, where the former develops CM and later dies of 
parasitemia without neurological manifestations. 

Research in human form of CM has posted various questions 
such as, is it possible to develop a model to study the human cerebral 
malaria by mimicking in mouse model? The answer is positive as 
Plasmodium berghei ANKA infection can be created in CB57BL/6 or 
CBA mice and it is widely used murine model to study experimental 
cerebral malaria (ECM). To look at the mechanisms to compare HCM 
and ECM, there are fundamental differences in parasite sequestration 
by human and mouse in CM. In mouse, the leukocytes get infected 
with parasites during ECM and these cells do get sequestered in brain, 
whereas, HCM, (which is a natural occurrence of the infection) is 
characterised by intense intracerebral sequestration of parasitized 
RBCS (pRBCs) in Brain. Extrapolation of the findings of the ECM 
to CM of human is quite complicated as mice lacking WBCs may 
not catch up the ECM.6 However, still large numbers of research 

publications are being done in ECM. Magnetic Resonance Imaging 
(MRI) studies in ECM reveal that Blood Brain Barrier (BBB) 
permeability was high in areas such as lateral ventricle, olfactory 
bulb and brainstem followed by brain swelling and edema. This 
effect was due to perforin, an effector molecule of having cytolytic 
effect, as inhibitor studies of perforin in ECM reveal the protection 
from BBB leakage.7 Further, in experimental CM, mice infected with 
Plasmodium berghei ANKA (PbA) strain, MRI showed hippocampal 
abnormalities. Treatment of NMDA receptor antagonists, reversed the 
changes, offered neuroprotective effects in both frontal cortex and 
hippocampus.8 

A study demonstrated that astrocytes readily take up the parasite 
derived vesicles and microglia the resident immune cell of brain 
phagocytosize the pRBCs in ECM. During such process, microglial 
cells release high amount of interferon gamma inducible protein 10 
(IP10) in plasma as well brain tissue of infected mice.9 This suggests 
that if there is any such similar mechanism could be seen in HCM. 
Ironically, CD8+T Cells is involved in brain pathology by inducing 
vascular breakage and neuronal death.10 Knockout studies reveal that 
Irgm3-/- mice were protected from CM. This protection of Irgm3-/- 
mice was due to less recruitment of CD8+T cells within the brain 
and low production of inflammatory cytokines.11 Further studies on 
immunopathological changes reported that in ECM, pRBCs can be 
seen in the brain on three days of infection, tissue changes and edema 
on five days of infection followed by haemorrhage in different areas 
of brain at 7th days of infection.12 The underlying immunopathological 
change were shown to affect the neurological functions by 
compromising memory. It is interesting to note that even before BBB 
disruption, PbA infected mice showed short term memory impairment 
and spatial memory deficits. PbA-infection induced early short term 
and spatial memory defects, prior to  blood brain barrier  (BBB) 
disruption.13 This was due to IL-33 receptor ST2 causing neurological 
inflammation and cognitive dysfunctions. While the immuno pathology 
at ECM is highly investigated, the role of enzymes in accelerating or 
preventing ECM is still poorly understood. Some studies on this have 
shown that, DUB cylindormatosis (CYLD), an enzyme which acts 
as an inhibitor of several cellular signalling pathways, is critically 
involved in promoting the ECM. Knockout studies of Cyld-/-  mice 
have survived the infection, whereas, congenic C57BL/6 mice, shown 
disrupted BBB, enhanced parasite sequestration etc. Interestingly, the 
sequestration of CD8 T cells, have reduced in ECM brain.14 
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Vectors Borne Disease (VBD)s are reported to represent amount 

17% of all the infectious diseases. The geographical distribution of 
vectors depends upon various climatic and social factors. In the recent 
past, the spread of VBDs across the world is so rapid that is associated 
with the change in climatic factors, global warming, travel and 
trade, unplanned urbanization, and deforestation etc. Malaria is the 
leading cause of death due to VBDs and rated among the infectious 
diseases. According to World Health Organization (WHO), in 2015 
an estimated 212 million cases of malaria occurred worldwide with 
429,000 mortality, mostly children in the African Region. This review 
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ECM is investigated for immuno pathology, micrRNA regulation 
and enzyme studies; however, the relevance of direct applicability of 
such findings to HCM remains elusive. Still long way is waiting to 
develop an intervention based on the available data generated from 
ECM. To be noted, immuno pathological process play a significant 
role in murine ECM, however, in human CM, it is the sequestered 
pRBCs in endothelium, the role of immune mechanisms are still 
elusive in case of human CM. Second, in research on ECM, the 
mice can be investigated on before malaria, during malaria and after 
malaria, such situations seldom is possible with human. A patient first 
comes with malaria to hospital, treatment with anti-malarial drugs 
are done followed by clinical investigations. Interventions based on 
murine model is questionable here as studies a controlled environment 
offers the expected results. 
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