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Introduction

Drug development remains to be a lengthy, painful and expensive
process. According to a very recent report by the Tufts Center for the
Study of Drug Development (CSDD), the overall development cycle
of a new market-approved drug could cost a whopping $2.6 billion
and approximately 14 years. The past two decades have seen the
emergence of more sophisticated experimental techniques, advanced
computational methods and complementary technologies in the field
of drug design and development.'? Such advances have not led to the
increase in the number of drugs in the market though. For instance, in
the year 2016, the U.S. Food and Drug Administration (FDA) approved
only 22 new drugs. The reasons for the slow progress can be attributed
to attrition of lead candidates along the drug discovery pipeline. It has
been estimated that ~40% of the attrition rate of candidate-drugs has
been associated with poor pharmacokinetic features and toxicity. Poor
solubility is, particularly, a very significant impediment in the drug
development efforts.

The solubility of a drug molecule is vital for its’ bioavailability. If
an orally administered drug is not sufficiently soluble, then it could
not be fully absorbed into the blood circulation and will be expelled
from the gastrointestinal tract before reaching its’ site of action.
Nevertheless, hydrophobicity and innate low—water solubility are
gradually becoming rather unsurprising characteristics of early hits,
lead compounds and even in some market—approved drugs.’ Nearly
60%-90% of the compounds that are currently being developed
exhibit poor water—soluble features®® and categorized under the
Biopharmaceutical Classification System (BCS) classes II (low
solubility and high permeability) and IV (low solubility and low
permeability).*® This is mainly because, most of the ligand-binding
sites in the target proteins are secluded from the aqueous environment
and hence hydrophobic compounds are generally preferred (or
developed) in order to gain high binding affinity and activity against
the target(s).>’ In addition, recently, the drug discovery research is also
seeing a paradigm shift from enzymes to more complicated therapeutic
targets, such as ion channels, protein-protein interfaces, kinases and
nuclear receptors.'*#1% Such challenging targets generally demand
more lipophilic drugs, which also involves high-crystal energies from
strong intermolecular interactions.® These factors altogether tend to
adversely impact the solubility of compounds.

Tackling solubility concerns in market—appro-
ved drugs

In spite of poor solubility, if a compound exhibits desirable
activity (against the target protein), then it could be formulated into
successful drugs with the help of various drug delivery technologies.
This includes pH modification technology, co—solvent and surfactant
solubilization, nanoparticle technology and micro emulsion
drug delivery systems.''> For example, ciprofloxacin, a current
fluoroquinolone-based antimicrobial agent, is weakly basic and have
poor water solubility at neutral pH.!' But the solubility of this agent
increases when the pH increases. As such, the currently administered
formulations of ciprofloxacin contain lactic acid as a solubilizing
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agent (or pH modifier) and hydrochloric acid for pH adjustment."
Imatinib, a protein-tyrosine kinase inhibitor for targeting cancers, is
another example for pH-dependent soluble drugs. This drug displays
very poor solubility; nevertheless, its’ B-polymorphic form (i.e.,
imatinib salt) has showed to be very soluble at pH< 5.5.!"13 Hence,
Imatinib mesylate has been orally administered for a targeted cancer
therapy.'""® Inclusion of co-solvents is also employed as a successful
strategy for the formulation of insoluble drugs in the market.'*1
Ethanol, polyethylene glycol (PEG 300 or 400), dimethylacetamide,
dimethyl sulfoxide (DMSO) and polysorbates are commonly used co-
solvents.? For instance, docetaxel, an anti-cancer chemotherapy drug,
is poorly soluble and found to show only ~8% oral bioavailability.
In order to improve the solubility of the drug, the new formulations
are administered with PEG 300 and polysorbate 80.!" Thus, insoluble
drug delivery technologies provide a great opportunity to save the
poorly soluble drugs (but with high activity) that passed the most-
time consuming and expensive clinical phases.''? At the same time, it
is important to acknowledge that the success is not always guaranteed
with the drug delivery technologies® and they also involve additional
costs and time to identify and establish a suitable technology.

Solubility challenges in biochemical assays

Apart from bioavailability concerns, the low solubility of
compounds poses a significant challenge for in vitro and in vivo
assays during the hit-to-lead stage of drug discovery. In particular,
the low solubility of compounds can impact the biological assays
in a number of ways, including underrated activity, variable data,
inaccurate structure—activity relationships (SAR), reduced HTS-
hit rates, and inaccurate toxicity estimations. For instance, the
low—solubility of compounds in DMSO causes variable data from
bioassay experiments. It is a common practice to dissolve each of the
compounds at a concentration of 10-30 mM in DMSO and an aliquot
is employed in experiments. And it is understood that ~10-20%
of discovery compounds are usually not soluble in DMSO at high
concentrations.'” If the initial concentration of the compound is not
correct, then this will lead to inaccurate concentrations in all of the
following dilutions. In most bioassays, the dose—dependent activity
of the test compounds over a range of concentrations will be carried
out to determine the concentration of half-maximal inhibition (or
IC50). Again in this case, if the compounds are unable to solubilise
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at the highest concentration, this will shift the dose-curve and lead to
inaccurate prediction of IC50 values for the compounds. Furthermore,
the physicochemical properties of low soluble compounds also tend to
increase the possibility of non-specific adsorption of these compounds
to the surfaces of different equipment involved in the experiments,
such as pipettes, syringes, multiwell plates, etc.> As a consequence,
this leads to reduced drug concentration in solution, thus leading to
erroneous interpretation of results. Di et al.'” discussed a range of
solubility challenges for biological assays and various strategies for
optimizing the assay systems. Some of their suggestions to enhance
bioassay performance for low-solubility compounds include, serial
dilution in DMSO (not in buffers), screening at lower concentrations,
in-well sonication, dissolve salts in 1:1 DMSO: water solvent and use
of solid arrays to store compounds. In their recent pharmacological
review, Williams et al.? have also presented extensive discussions of
various strategies for addressing low drug solubility in drug discovery
and development. Although different techniques (and strategies) are
being continuously developed and refined to address the low solubility
of compounds in biochemical assays, the solubility challenges are
only constantly increasing.

Methods for solubility estimation of drug-—
like compounds

There has been wide agreement on the fact that it is hugely
beneficial (in terms of money, time and labour) if the solubility
of compounds can be determined at the early stages of drug
development, i.e., even during the ‘hit-search’ phase. This realization
has led to the developments of various experimental techniques and
computational approaches for solubility estimations of drug (or drug-
like) molecules. Experimental methods for measuring the solubility
of compounds include kinetic, semi-equilibrium and equilibrium
methods. The former two approaches are mostly employed as a
high-throughput assay during the early stage of drug discovery;
while the equilibrium method is low-throughput and hence is used
at advanced stages of development. Major pharma industries, such
as AstraZeneca, Novartis, Roche and Pfizer have been reported to
employ semi—equilibrium techniques for high—throughput solubility
measurements.’ On the other hand, kinetic method has been employed
by Boehringer Ingelheim, GSK, Pfizer & Warner—Lambert.’ Different
analytical methods, such as light scattering, UV plate reader, LC-
MS and LC-UV are employed in these solubility assays and each
of them has its own merits and demerits that also impact the results
obtained. Di et al.’ has reviewed in detail about the various solubility
measurement approaches, their usefulness and limitations in drug
discovery and development.

On the other end of the spectrum, there were also significant efforts
focused on developing computational models as low—cost tools to
predict the solubility of drugs and drug-like molecules. Obviously,
the expectation here is that a computation tool could make quick
and accurate estimations of aqueous solubility of compounds based
on their molecular structures, before testing them in more expensive
and complex biochemical assays. Quantitative structure property
relationship (QSPR) approach has been most popularly employed
for this purpose. The QSPR approach generally aims to ascertain a
mathematical relationship (or correlation) between the solubility
property of the compounds and the molecular descriptors obtained
from their 1D, 2D or 3D structures. Different methods such as
multiple linear regression (MLR), artificial neural networks (ANN),
support vector machines and random forest (RF) and Partial-Least
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Squares (PLS) are employed for developing QSPR models.”!'®?! Until
recently, several QSPR models have been developed for predicting
the solubility of drugs and most of them are able to perform with
an accuracy of 0.6-0.9 log solubility.'"® For example, Palmer et al.
has developed QSPR models using RF, SVM, ANN and PLS for
the prediction of aqueous solubility of drugs. These models were
developed based on the experimental data for 988 organic compounds
and found the RF model to predict the aqueous solubility of compounds
with a root mean square error (RMSE) of 0.69 log S units, which was
better than the other models in this study. Hughes et al.”’ compared the
different QSPR models for predicting the aqueous solubility (logS),
melting point (Tm) and octanol-water partition coefficient (LogP)
of drug-like compounds. The results found that, the QSPR model
for LogP made predictions with an R?=0.87, while the R? values for
the predictions of Tm and LogS were predicted with 0.49 and 0.79,
respectively. Most QSPR models perform better for general organic
compounds than drugs or drug—like molecules. The reasons for these
are due to the quantity and quality of experimental data available for
drugs. Most QSPR models are generally developed using the available
experimental data for the chosen training set; however such measured
data are not available for large number of drugs but only for organic
compounds.'®2?° Even the available experimental values are gathered
from different sources which means that the actual measurements of
the data sets could have been carried out under different experimental
conditions and different assays.?! Hence, the QSPR models, for that
case any informatics-based model generally tend to perform poorly
when it comes to drugs.

Such drawbacks from QSPR models can be overcome by
employing computational chemistry (or theoretical chemistry)
approaches, such as classical simulations based on empirical force
fields or using quantum mechanics. These approaches attempt to
model the real system used in bioassays, thus giving much better
understanding about the solubility and aggregation of drugs under
prescribed conditions. Nevertheless, these approaches are in general
very computationally intensive and do not bring the high-throughput
value of informatics-based methods. Palmer et al.'® employed ab initio
calculations to predict the intrinsic aqueous solubility of some organic
compounds and found that the accuracy of predictions was still
not high. So, the authors combined informatics and computational
chemistry-based approaches to establish a thermodynamic cycle
and predict the solubility, which resulted in predictions with
RMSE=0.71. Recently, a research team conducted an open challenge
to predict the solubility of 32 compounds that they have determined
experimentally.”>? For this purpose, the authors also provided the
experimental measurements for 100 drug-like molecules (with wide
range of MW and pKa values) for using as a test set (or training set).
This open solubility challenge?*? received ~100 participants, and each
of them employed a variety of computational models at their disposal
(which were not revealed in the paper) to predict the solubility of
the 32 compounds. The results® from this challenge show that the
predictions for ~28 compounds were made with an R? between 0.0
to 0.642. Although, what computational methods were employed
for predictions and what was the expertise levels of the participants
were not revealed in the paper,” one thing was clear; the current
computational methods still needs many improvements for accurate
estimation of solubility of drugs. Particularly, more experimental data
about drug solubility needs to be made available, which then can be
used to either develop new predictive models or improve the existing
ones. Further, there are also some important challenges such as
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accounting solubility of drugs at different pH conditions and different
(or a mixture) of solvent conditions employed in the assays, while
making predictions. Such challenging questions can be addressed by
employing molecular modelling and dynamics simulations for at least
select set of compounds in different scaffolds, which can then drive the
experiments. For example, a mixture of a desired drug, tween80 and
DMSO at a concentrations employed in a bioassay can be modelled
and simulated quickly (using classical MD) to see if the drug forms
any aggregates. This will not only be useful to predict solubility of
the compound, but also provide an overall understanding for the
molecular basis to drug solubility. Having said that, there is always a
trade-off and in this case, it is the escalation of the computational costs
to gain better accuracy, which we think is worth the price. Finally,
the rule of ‘one-size-does not-fit-all” still holds true in the case of
computational prediction of aqueous solubility. One needs to choose
one or a combination of methods to gain the optimal accuracy levels
which can complement (and sometimes guide) further experiments
and assist in delivering safe drugs to the market.
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