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Abbreviations: CT, computed tomography; PLC, posterior 
ligamentous complex; TLJ, thoracolumbar junction; MRI, magnetic 
resonance imaging; XGBoost, eXtreme gradient boosting

Introduction
Traumatic injuries of the thoracolumbar junction (TLJ) (Th11–

L2) account for a significant proportion of all spinal traumas and 
represent one of the key challenges in modern vertebrology.1 The high 
incidence of injuries in this zone is attributed to its biomechanical 
characteristics: the transition from the rigid thoracic spine to the more 
mobile lumbar segment creates a stress concentration area vulnerable 
to axial, flexural, and rotational forces.2 According to epidemiological 
studies, fractures localized at the TLJ constitute up to 60–90% of all 
injuries involving the thoracolumbar spine (Th1–L5) as a whole.3,4 
The primary mechanisms of injury include falls from heights and 
motor vehicle accidents, predominantly affecting individuals of 

working age, which confers a pronounced socioeconomic significance 
to the problem.5

Injuries to the TLJ are often accompanied by sagittal imbalance, 
the formation of post-traumatic deformities, and the development of 
neurological deficits. Even in the absence of primary neurological 
impairment, instability of the damaged segment can lead to chronic 
pain syndrome, progression of kyphotic deformity, and a reduced 
quality of life.6 Collectively, these factors underscore the necessity for 
precise morphological assessment of the trauma and a well-founded 
choice of therapeutic strategy.

In recent decades, efforts have been made to standardize the 
treatment of spinal trauma based on unified classification systems. 
One of the most widely used is the AO Spine classification, which is 
based on a hierarchical principle, categorizing injuries by increasing 
severity—from compression fractures to rotational-translational 
injuries with gross instability.7 The implementation of this system has 
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Abstract

Purpose: The diagnosis of posterior ligamentous complex (PLC) injury in thoracolumbar 
fractures remains a major challenge under conditions of diagnostic uncertainty, particularly 
when magnetic resonance imaging (MRI) is unavailable or delayed. This study aimed to 
develop and internally validate a quantitative CT-based model and a clinical nomogram for 
predicting PLC status in AO Spine type A1–A2 fractures using machine learning–guided 
morphometric analysis.

Methods: CT and MRI data from 90 patients with thoracolumbar junction injuries were 
retrospectively analyzed, including 43 patients with AO Spine type A1–A2 fractures used 
for model development. Key morphometric parameters, including the acute interspinous 
expansion angle (AIEA), anterior-to-posterior height ratio (A/P), and bone density expressed 
in Hounsfield units (HU), were measured. An extreme gradient boosting (XGBoost) 
algorithm was used to estimate feature importance, which subsequently informed the 
development of an interpretable 10-point scoring scale and a logistic regression–based 
nomogram. Model performance was assessed using the area under the receiver operating 
characteristic curve (AUC) and calibration analysis with bootstrap correction.

Results: The scoring scale identified AIEA and the A/P ratio as the most influential predictors, 
contributing 10.0 and 8.5 points, respectively. The score-based model demonstrated high 
discriminatory performance with an AUC of 0.944 (95% CI: 0.912–0.976), exceeding that 
of the baseline machine learning model (AUC = 0.836). Each additional point on the scale 
was associated with a 31% increase in the odds of PLC injury (odds ratio 1.31, p < 0.05). 
Calibration analysis showed good agreement between predicted and observed probabilities 
across the clinically relevant risk range (MAE = 0.041).

Conclusion: The proposed CT-based prognostic model provides an objective and 
transparent tool for risk stratification in AO Spine type A1–A2 thoracolumbar fractures. By 
quantifying the probability of occult posterior instability, the nomogram supports evidence-
based decision-making regarding the need for MRI and surgical stabilization in acute 
thoracolumbar trauma.

Keywords: thoracolumbar junction fractures, posterior ligamentous complex injury, 
CT-based prognosis, AO spine classification, machine learning, XGboost algorithm, 
nomogram, occult instability
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improved the objectivity of trauma descriptions and the consistency of 
clinical decisions.8,9 However, the AO Spine classification primarily 
relies on computed tomography (CT) data, which in some cases 
complicates its implementation.10

A key limitation of this system is the difficulty in assessing the 
state of the posterior ligamentous complex (PLC), the integrity of 
which is of fundamental importance for differentiating between stable 
and unstable injuries.11 Computed tomography only identifies indirect 
signs of PLC rupture, whereas isolated ligamentous injuries may 
occur without pronounced bony changes.12 This leads to diagnostic 
uncertainty, high inter-observer variability, and the frequent need to 
use the “M1” modifier (undetermined PLC status).13

Magnetic resonance imaging (MRI) is considered the “gold 
standard” for assessing soft-tissue stabilizing structures of the spine 
and allows for direct visualization of the PLC components.14 The 
highest diagnostic yield of MRI is achieved within the first few days 
post-injury, when edema and hemorrhagic changes in the ligamentous 
apparatus are most pronounced. Nevertheless, performing MRI in 
the acute period is often limited by method availability, time delays, 
and contraindications. Supplemental MR studies reveal clinically 
significant PLC ruptures in a substantial proportion of patients, often 
leading to the reclassification of an injury from Type A to Type B and 
a shift in treatment strategy toward surgical stabilization.15

The status of the posterior ligamentous complex is a pivotal factor 
in determining the treatment method. An intact PLC may allow for 
conservative management, whereas its rupture reclassifies the injury 
as unstable, requiring surgical intervention.16 Even morphologically 
simple compression fractures of the vertebral body must be considered 
distraction injuries (with different treatment indications) if a PLC 
injury is present.17

A number of studies convincingly demonstrate the absence of a 
single, reliable, pathognomonic CT sign of PLC injury. No individual 
radiological symptom possesses sufficient sensitivity and specificity 
for the confident diagnosis of a ligamentous tear.12,13

Conversely, literature presents works demonstrating the high 
diagnostic value of a combination of several CT signs. However, 
many of these studies utilize prominent and obvious changes as key 
criteria—such as gross widening of the interspinous space, clear 
dislocation of the facet joints, or multiple fractures of the posterior 
elements—cases where the fact of PLC injury typically does not raise 
clinical doubt.18,19 In real-world practice, such cases are relatively rare.

Significantly more often, changes are subtle or borderline, and 
no single CT sign carries independent diagnostic weight. In these 
situations, an objective assessment of the PLC is only possible based 
on a constellation of indirect manifestations, each of which may have 
low predictive value on its own but, in combination, reflects a failure 
of the posterior complex’s stabilizing function.20

The active integration of high-performance statistical data 
processing into the modern scientific process, including multivariate 
analysis and machine learning algorithms (including deep learning), 
opens new opportunities for diagnostic optimization.21,22 These 
approaches allow for the identification of complex non-linear 
relationships between individual CT signs, increasing the accuracy 
of PLC injury risk stratification and enabling the development of 
reproducible clinical decision-making models.23

Identifying sets of indirect radiological signs with high diagnostic 
significance for posterior ligamentous complex rupture will improve 
the accuracy of non-invasive diagnostics, reduce dependence 

on emergency MRI, and bring clinical practice closer to the 
standardization of diagnostic algorithms. This, in turn, will facilitate a 
more reasoned choice of treatment tactics and improve outcomes for 
patients with thoracolumbar junction injuries.

Aim

The aim of this study is to develop an objective model for assessing 
the status of the PLC in injuries of the TLJ based on an analysis of a set 
of indirect CT signs using modern methods of multivariate statistical 
data processing.

Materials and methods
Study design

The study was performed using a mixed-methods design, 
integrating analytical and clinical (modeling) components, which 
ensured a transition from a theoretical framework to empirical 
forecasting.

Analytical stage

At the first stage, a structured literature review was conducted 
to identify the most informative radiological signs and criteria for 
assessing PLC injury in TLJ trauma, with an emphasis on signs 
detectable via spiral CT without using MRI data as input parameters. 
The search for sources was carried out in international databases 
(PubMed, Scopus, Web of Science) without restrictions on the date 
of publication; original research and reviews in English were included 
in the review.24

To increase the specificity and accuracy of the search and minimize 
the number of publications that did not meet the study objectives, a 
combination of terms from the MeSH thesaurus and keywords in titles 
and abstracts (TIAB) was used.25 As part of the initial search in the 
PubMed database, the following search query was applied:

(“posterior ligamentous complex” OR “posterior ligament 
injury” OR “posterior ligamentous injury” OR “PLC injury”) 
AND (“thoracolumbar fracture” OR “thoracolumbar junction” OR 
“thoracolumbar spine”) AND (“computed tomography” OR CT OR 
“CT imaging” OR “radiological sign*” OR “indirect sign*”) AND 
(trauma OR traumatic) NOT (osteoporosis OR pediatric OR cervical 
OR sacral OR “spinal cord injury”)

In addition to the main query, a supplementary targeted literature 
search was performed, focusing on publications dedicated to the AO 
Spine classification of thoracolumbar spine injuries, the role of the 
PLC in determining injury stability, and the use of the undetermined 
PLC status modifier (M1):

(“AO Spine” OR “AO classification” OR “thoracolumbar 
classification”) AND (“posterior ligamentous complex” OR 
“ligamentous injury” OR “PLC”) AND (“computed tomography” 
OR CT) AND (thoracolumbar OR thoracolumbar junction)

Similar search strategies were adapted for the Scopus and Web of 
Science databases, taking into account the specifics of their search 
syntax.

Clinical stage

At the second stage, a retrospective single-center diagnostic study 
was performed with the construction and internal validation of a 
prognostic model (model development and internal validation study) 
based on the analysis of CT images and clinical data of patients with 
compression and burst fractures of the TLJ over a continuous 7-year 
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period (2018–2024). The goal of this stage was to develop a model for 
predicting the probability of PLC injury based on a set of CT signs.

The study included patients with compression or burst vertebral 
body fractures of the TLJ who were initially assigned AO Spine 
Type A1–A4.7 Cases with obvious CT signs of PLC rupture, which 
presented no diagnostic uncertainty, were excluded as they did not 
correspond to the goal of developing a model for borderline clinical 
situations.

The presence or absence of PLC injury was considered a binary 
target outcome and was determined based on MRI and/or intraoperative 
data if the patient underwent surgical intervention. MRI verification 
included an assessment of the integrity of the supraspinous and 
interspinous ligaments, the ligamentum flavum, and the facet joint 
capsules.26 The study was approved by the local ethics committee.

Radiological parameters and measurement 
methodology

The definitions and measurement methodology for the CT 
parameters selected based on the structured literature search are 
presented in (Supplementary data) Table S1. All measurements were 
performed on standard sagittal, axial, and coronal CT reconstructions 
using the RadiAnt DICOM Viewer software package (Medixant, 
Poland; version 2023.1, license No. 1860F047). In cases of asymmetry, 
the value of the maximum expression of the sign was recorded. The 
measurement methodology for several quantitative parameters is 
illustrated in Supplementary Figure 1.

Figure 1 Schematic representation of vertebral body fracture morphology 
at the thoracolumbar junction in the mid-sagittal plane. Relationship between 
the Cobb angle (CA) and Gardner angle (GA) based on the localization of 
endplate disruption: A - cranial (superior) endplate injury (CA < GA); B - 
caudal (inferior) endplate injury (CA > GA); C - simultaneous injury of both 
endplates (CA ≈ GA).

Measurements of the radiological parameters under consideration 
were performed independently by three experts who had no access 
to clinical data or information about the outcome (the status of the 
PLC).27 To minimize subjectivity, quantitative data were averaged.28 
In cases where significant inter-expert discrepancies (exceeding 2 
standard deviations) were identified, a joint review of the CT scans 
was conducted to develop a unified diagnostic position for the specific 
case.29 To assess reproducibility, Mean Absolute Error (MAE) 
and Mean Absolute Percentage Error (MAPE) were calculated for 
quantitative parameters, along with Fleiss’ Kappa (κ) for dichotomous 
traits.30–32

Statistical analysis

Data processing was performed in the R environment version 4.5.1 
(R Core Team) using the RStudio IDE version 2025.05.1+513 (Posit).

Data preprocessing

Qualitative traits considered as potential predictors of PLC 
injury (type “present/absent”) were converted into binary format 
(0/1). Quantitative variables (angles, distances, coefficients) were 

standardized by centering and scaling using standard statistical 
methods.33 For descriptive statistics, 95% confidence intervals for 
medians were estimated using nonparametric bootstrap resampling 
(2,000 iterations), and 95% confidence intervals for proportions were 
calculated using the Wilson score method.

Model construction

The XGBoost (eXtreme Gradient Boosting) decision tree method 
with a binary logistic classification function was used to predict PLC 
injury.34 Training and hyperparameter tuning were conducted using 
5-fold cross-validation repeated 5 times, ensuring a robust evaluation 
of model quality. Hyperparameter optimization included tuning for 
learning rate, tree depth, and subsampling ratios. To address class 
imbalance, the scale_pos_weight parameter was adjusted based on the 
training set distribution. The area under the ROC curve (AUC) was 
used as the optimization criterion. Thus, the model belonged to the 
class of binary diagnostic models with a probabilistic output.

Model evaluation

Model accuracy was evaluated based on ROC analysis results with 
the calculation of AUC and 95% confidence intervals.35 Additionally, 
sensitivity and specificity indices were calculated at a standard 
threshold value of 0.5. To assess calibration, calibration curves with 
bootstrap correction (B = 200) were plotted. External validation of the 
model was not performed in this study.

Model interpretation

Predictor importance was evaluated by two methods: (1) the 
internal Gain metric in the XGBoost algorithm and (2) model-agnostic 
permutation importance. Partial dependence plots were constructed 
for key variables, reflecting the nature of the feature’s influence on the 
probability of PLC injury.36

Prognostic scale

Additionally, an interpretable point-based scale was developed 
based on supervised binning of quantitative traits. For each value 
interval, the frequency of PLC injury was calculated, after which the 
values were normalized into a scale from 0 to 10 points. The patient’s 
total score was used in a logistic regression model to convert it into 
the probability of injury. ROC analysis and calibration assessment 
were also performed to verify the scale.37

The study and presentation of results were carried out in accordance 
with the TRIPOD recommendations for the development and internal 
validation of prognostic models.38

Results
Sample characteristics

The general morphological characteristics of the study cohort are 
presented in Table 1. The study included 90 cases of vertebral body 
fractures of the TLJ (AO Spine types A1–A4), with the majority of 
injuries localized at the Th12 and L1 levels.

Parameter measurement results

The measured values of morphometric indices and their 
reproducibility metrics are presented in Tables 2 and 3. Table 2 
provides summary statistics for quantitative parameters (median and 
95% confidence interval [CI]), along with inter-expert error estimates 
(Mean Absolute Error [MAE] and Mean Absolute Percentage Error 
[MAPE]).
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Table 1 Morphological characteristics of the study sample (n = 90)

Parameter Value
Age, years 41 (19–65)
Sex
  Male 58 (64.44%)
  Female 32 (35.56%)
Level of injury
  Th11 14 (15.6%)
  Th12 27 (30.0%)
  L1 41 (45.6%)
  L2 8 (8.9%)
Vertebral body fracture type (AO Spine)
  A1 35 (38.9%)
  A2 8 (8.9%)
  A3 13 (14.4%)
  A4 34 (37.8%)

Note: Data are presented as n (%) unless otherwise stated. Age is provided as median 
(minimum–maximum). Sums may not equal 100% due to rounding.

Table 2 Quantitative CT Parameters and Measurement Reproducibility

Parameter (unit) Median 95% CI MAE MAPE (%)
CA (°) 13.58 11.41–14.59 0.397 2.952
GA (°) 17.78 16.38–19.18 0.645 3.954
RA (°) 19.85 18.16–20.83 0.682 4.024
LKA (°) 20.26 18.86–21.67 1.693 8.571
AIEA (°) 88.41 85.44–93.39 1.921 2.242
ISD (mm) 28.83 27.33–30.32 2.764 9.606
ISD ratio (—) 1.77 1.55–2.07 0.134 7.717
ISA (°) 9.11 7.63–10.59 0.843 8.765
A/P ratio (—) 0.59 0.57–0.61 0.016 2.721
AVH ratio (—) 0.65 0.63–0.68 0.014 2.202

Note: Angular parameters are in degrees (°), linear parameters in millimeters (mm), 
and dimensionless ratios are marked with (—).

Table 3 Qualitative CT signs and inter-rater agreement

Parameter Frequency, n (%) 95% CI Fleiss' Kappa (κ)
FBF 42 (46.7%) 36.1–57.5 0.851
VLF 22 (24.4%) 16.2–34.6 0.807
HLF 5 (5.6%) 1.8–12.5 0.702
FM 31 (34.4%) 24.7–45.2 0.421
FJW 24 (26.7%) 17.9–37.0 0.387
SPF 31 (34.4%) 24.7–45.2 0.771

Table 3 shows the frequency of qualitative signs of injury and 
the inter-rater agreement coefficients (Fleiss’ Kappa) for these 
dichotomous indicators.

Assessment of anatomical correlation between 
predictors

To simplify the predictive model, facilitate its clinical application, 
and enhance accuracy by eliminating multicollinearity, an analysis 
of the anatomical correlation between key morphometric parameters 
used in TLJ injury assessment was conducted. In the selection of 
potential features, physiological and biomechanical relevance is as 
critical as statistical significance. Interrelated parameters may provide 
redundant information, duplicating one another, which reduces 
diagnostic specificity and complicates interpretation. Consequently, 
particular emphasis was placed on the comparative assessment of 

angular parameters reflecting kyphotic deformity and indicators 
of PLC distraction, as these were the most numerous and diverse 
categories in our dataset.

Relationship between Cobb, Gardner, and regional 
angles

The Cobb angle (CA), Gardner angle (GA), and regional angle 
(RA) all describe the degree of kyphotic deformity in the injured 
segment; however, they characterize the functional response of the 
segment to trauma rather than the direct consequence of the injury. 
The integrity of the PLC limits post-traumatic kyphosis even in cases 
of significant vertebral body compression; therefore, with an intact 
PLC, these angles may remain close to normal. Nevertheless, certain 
patterns are observed. Specifically, the relationship between CA and 
GA depends on which endplate is fractured—superior or inferior.

This relationship is schematically shown in Figure 1: when the 
superior endplate is damaged, the Gardner angle is usually larger 
than the Cobb angle (Option A: CA < GA), whereas inferior endplate 
damage often results in the opposite relationship (Option B: CA > 
GA). In cases where both endplates are damaged approximately 
equally, the values of these angles converge (Option C: CA ≈ GA).

Clinically, options A and B most often correspond to AO Spine 
type A1 and A3 fractures (where one endplate remains intact), while 
option C is more characteristic of type A2 or A4 fractures. However, 
no rigid dependence between fracture type and the CA/GA ratio was 
found: even with simultaneous damage to both endplates, the degree 
of wedge deformity is most often determined by the condition of the 
cranial (superior) endplate. In our cohort, the distribution of the Cobb-
to-Gardner angle ratio was as follows (Table 4): in approximately 
38% of cases (n=90), the Cobb angle was smaller than the Gardner 
angle, in 8% it exceeded it, and in the remaining ~54%, they were 
approximately equal (difference < 1°).

Table 4 Distribution of the Cobb-to-Gardner angle ratio according to the 
type of vertebral body injury (n=90)

Injury 
type

Damaged 
endplate N CA < 

GA (%)
CA > GA 
(%) CA ≈ GA (%)

A1 Superior 21 17.78 0 5.56
Inferior 14 2.22 7.78 5.56

A2 Both 8 5.56 0 3.33
A3 Superior 9 4.44 0 5.56

Inferior 4 0 2.22 2.22
A4 Both 34 20 5.56 12.22

Note: Percentage values are relative to the total number of cases.

The prevalence of specific combinations depended on the nature 
of the vertebral body fracture. For example, in simple wedge 
compressions (A1), CA < GA is most typical, especially if the superior 
endplate is damaged. In burst fractures (A4) involving a height loss 
of the entire vertebral body, the angles are usually nearly equal (CA 
≈ GA). A significant difference in the CA/GA angle ratio (CA/GA) 
between injury types was confirmed (Kruskal–Wallis test: χ² = 9.00, 
df = 3, p = 0.029).

When comparing GA and RA, an almost direct linear relationship 
was identified (Figure 2). This is expected, as the difference between 
the Gardner angle and the regional angle is determined solely by 
the individual angulation of the endplates of the adjacent uninjured 
vertebra (normally ±2° in the TLJ). In our sample, the Pearson 
correlation coefficient between GA and RA was 0.99 (95% CI 0.985–
0.993; p < 0.0001), indicating that these metrics are virtually identical.
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Figure 2 Correlation between Gardner angle (GA) and Regional angle (RA) 
in patients with traumatic injuries of the thoracolumbar junction. The scatter 
plot displays a near-perfect linear relationship (Pearson’s r = 0.99; 95% CI 
0.985–0.993; p < 0.0001). The solid line represents the linear regression trend, 
and the shaded area indicates the 95% confidence interval

Kyphotic deformity vs. posterior complex distraction

During the development of quantitative criteria for assessing the 
status of the PLC, we initially considered both angular parameters — 
the Cobb angle (CA) and Gardner angle (GA) — as well as indicators 
reflecting posterior complex distraction, such as interspinous distance 
(ISD) and interspinous angle (ISA). However, a detailed analysis of the 
gathered data, comparison with literature sources, and the geometric 
logic of trauma pathomechanics led us to conclude that limiting the 
final diagnostic model to two angular parameters, while excluding 
ISD and ISA as independent markers, was the most appropriate course 
of action.

The primary argument lies in the geometric nature of these 
measurements. An increase in the interspinous space or interspinous 
angle is invariably accompanied by a change in the spatial orientation 
of adjacent vertebrae. This realignment inevitably leads to an increase 
in the segmental Cobb angle, which captures the magnitude of 
kyphotic deformity between uninjured adjacent bodies. Consequently, 
an increase in ISD or ISA cannot occur while the Cobb angle remains 
normal, and an increase in the Cobb angle is necessarily combined 
with changes in interspinous metrics. Thus, the information provided 
by ISD and ISA is redundant, as it is already captured by Cobb 
parameters but expressed with lower reproducibility and greater 
variability.

In Type A1–A2 compression injuries, where the posterior complex 
remains intact, the segmental Cobb angle stays close to baseline 
because the adjacent intact bodies remain parallel. In these cases, 
the Gardner angle serves as the objective measure of deformity, as 
it accounts for the inferior endplate of the injured body and captures 
local wedging even when the ligaments are preserved. Due to this, GA 
proves to be more sensitive in pure compression fractures, whereas CA 
demonstrates changes only when the posterior complex is involved. 
Effectively, the combination of these two angular indicators covers 
both primary pathomechanical scenarios: GA captures compression 
without ligamentous injury, and CA captures posterior complex 
distraction.

The issue of reproducibility is also critical. Our data showed that 
for angular parameters (CA, GA, RA, AIEA), the Mean Absolute 
Error (MAE) ranged from 0.4° to 1.9°, with a Mean Absolute 
Percentage Error (MAPE) of 2.9–4.0%. In contrast, metrics related to 
the interspinous space demonstrated significantly higher variability: 
for ISD, the MAE reached 2.8 mm with a MAPE of 9.6%, and for 
ISA, the MAE was 0.84° with a MAPE of 8.8%. This confirms that 
angles provide higher measurement precision and inter-observer 

consistency. Literature frequently highlights that inter-rater agreement 
coefficients (κ) for angular parameters are substantially higher than for 
interspinous values, making them more reliable in clinical practice.

Furthermore, ease of use plays a vital role. The Cobb and Gardner 
angles are well-known and familiar to clinicians; their measurement 
is time-efficient and requires no complex additional constructions. In 
practical settings, this becomes a significant advantage, allowing for 
the integration of the methodology into routine examination protocols. 
Utilizing only two quantitative parameters not only simplifies the 
algorithm but also reduces the likelihood of errors, facilitates training, 
and increases the chances of widespread clinical adoption.

Consequently, the combination of Cobb and Gardner angles 
reliably covers both key mechanisms of deformity — compression 
with an intact posterior column and segmental kyphosis when it is 
damaged. This renders additional distraction indicators, such as ISD 
and ISA, redundant. While they may serve as auxiliary indirect signs 
in borderline cases, they are not essential for deciding whether a PLC 
injury has occurred. Reducing the set of quantitative criteria to two 
reproducible and well-validated angular parameters enhances the 
reliability, reproducibility, and clinical applicability of the proposed 
model without sacrificing diagnostic informative value.

Prognostic models

A critical stage in developing prognostic models is determining 
the degree of homogeneity within the analyzed sample. While using a 
single universal model for all types of compression and burst vertebral 
body fractures may seem clinically appealing, it often leads to reduced 
predictive accuracy. This is due to the pronounced heterogeneity of the 
morphological and biomechanical mechanisms underlying different 
subtypes within the AO Spine classification.

Specifically, Type A1 and A2 injuries are, in the vast majority 
of cases, characterized by relatively limited involvement of bony 
structures. In these scenarios, the clinical severity of the trauma is 
primarily determined by the degree of vertebral body deformity, as 
reflected by angular and linear morphometric parameters. Thus, the 
leading pathomechanical process is compression with local wedging, 
while the structural and functional integrity of the segment is formally 
preserved.

In contrast, Type A3 and A4 injuries are characterized by the loss 
of integrity in both the anterior and posterior walls of the vertebral 
body, resulting in multi-fragmentary comminution and frequently 
compromising the spinal canal. In these instances, angular deformity 
becomes a secondary consideration and cannot fully reflect the severity 
of the injury; instead, the degree of fragmentation and disintegration 
of the vertebral body becomes the key marker.

From a biomechanical perspective, this implies that in one 
group (A1–A2), the segmental deformity response to axial loading 
dominates, whereas in the other (A3–A4), structural instability 
due to the destruction of supporting elements prevails. Attempting 
to combine both groups into a single model creates a risk of 
multicollinearity among features, weakens the prognostic power of 
individual parameters, and diminishes the overall discriminatory 
capacity of the algorithm.

Therefore, to enhance accuracy and clinical validity, we deemed 
it appropriate to develop and validate separate prognostic models for 
Type A1–A2 and Type A3–A4 injuries. This approach accounts for 
the differences in injury pathomechanics, allows for the adaptation of 
predictor selection to the leading mechanism of injury, and increases 
the reliability of prognostic conclusions.
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Model for type A1–A2 fractures

Methodology and predictive accuracy

The eXtreme Gradient Boosting (XGBoost) method was employed 
to predict PLC injury in Type A1–A2 compression fractures. The 
analysis included 43 patients with verified A1–A2 fractures; PLC 
injury was confirmed in a subset of these cases (target variable: Yes 
– PLC rupture present, No – PLC rupture absent). For each case, 
12 potential predictors were analyzed, including the previously 
mentioned morphometric indices (angles, height ratios, qualitative 
signs, etc.).

Due to the relatively small sample size, model performance was 
evaluated using cross-validation. A stratified 5-fold cross-validation, 
repeated 5 times, was implemented to maximize the utility of the 
limited dataset and to average results across different splits, thereby 
increasing the reliability of the performance estimation. The area 
under the ROC curve (AUC) served as the primary quality metric, 
as it remains independent of the classification threshold and accounts 
for the sensitivity-specificity trade-off across the entire range. The 
resulting model demonstrated an average AUC = 0.836 (mean across 
5×5 CV), indicating high discriminatory capacity: with approximately 
84% probability, the algorithm assigns a higher predicted risk to a 
patient with a true PLC rupture than to one without. Figure 3 displays 
the averaged ROC curve, showing significant deviation from the 
diagonal line of random chance.

Figure 3 ROC analysis of the predictive model. The plot shows the trade-off 
between sensitivity and specificity for PLC injury detection (AUC = 0.836 
(mean across 5×5 CV)).

Using a standard classification threshold of 0.5, the model’s 
sensitivity was approximately 80.7% and its specificity was 70.7%. 
In other words, the algorithm identifies about 80% of PLC rupture 
cases, while approximately 29% of its positive predictions are false 
positives. This balance, slightly skewed toward higher sensitivity, is 
considered acceptable for a screening tool, although further research 
is needed to refine the optimal threshold for specific clinical tasks. 
Repeated cross-validation showed minimal variance in AUC between 
splits (within a few percentage points), suggesting model stability 
and a lack of significant overfitting. Increasing model complexity 
(e.g., more trees or greater depth) did not improve the AUC; thus, 
the final configuration was optimized (100 trees, depth 3, learning 
rate 0.1, regularization γ = 0,1, feature subsampling 85%, observation 
subsampling 70%).

Feature importance analysis

To interpret the model, predictor informativeness was calculated 
using two methods: (1) the built-in XGBoost Gain metric (the average 
contribution of a feature to the reduction of loss across decision trees) 
and (2) Permutation Feature Importance — an independent assessment 
based on the random shuffling of feature values and measuring the 
resulting decrease in AUC. Both approaches revealed a similar set of 
leading predictors (Figure 4).

Figure 4 Predictor importance of the model for the A1–A2 group. 

A — Ranking based on the Gain metric (the relative contribution of each 
feature to the reduction of model loss within the XGBoost algorithm). 

B — Ranking based on Permutation Feature Importance (data presented as 
mean loss in accuracy with 95% CI)

The greatest contributions to the model were made by AIEA, A/P 
ratio, and the presence of a spinous process fracture (SPF). According 
to the Gain metric, these features were the most informative, with 
individual contributions of approximately 27.8%, 23.4%, and 
13.0%, respectively. The second tier of importance consisted of 
anterior fragment displacement (AED, ~10.8%), the Gardner angle 
(GA, ~7.1%), and mean bone density (HU, ~4.7%). Signs such as 
FBF, AVH ratio, and the Cobb angle (CA) had smaller independent 
contributions (about 3–4% each), while the binary indicator “Type 
A2” was the least informative (~1.8%). The low informativeness of the 
A2 subtype classification is explained by the fact that the distinctive 
features of A2 fractures relative to A1 are already captured by other 
quantitative parameters (degree of wedging, presence of fragments, 
etc.); therefore, adding the “A2” indicator itself merely duplicates 
existing information. Permutation importance analysis confirmed this 
hierarchy: the largest drops in AUC occurred when shuffling AIEA, 
A/P, and SPF, demonstrating that these features are indeed critical for 
the prediction. Minor shifts in rank among less informative factors 
(e.g., HU vs. CA) are attributed to the differences between internal 
tree-based metrics and the actual impact on the outcome, but the 
core predictors remain consistent across both methods, increasing 
confidence in their significance.

Integral weighting coefficients

To translate the results of the model analysis into a clinically 
intuitive form, an integral weight intW was calculated for each feature, 
combining three metrics from the XGBoost algorithm: Gain, Cover 
(the proportion of observations where the feature was used in the 
trees), and Frequency (the frequency of the feature’s use across the 
trees).

The weight was calculated using the following formula:

int 0,5 Gain 0,25 Cover 0,25 FrequencyW = × + × + ×

The coefficients for each component were selected to reflect the 
“strength” of the feature’s influence on class separation (Gain), its 
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“breadth” of coverage (Cover), and its “stability” of use (Frequency). 
Subsequently, intW values were normalized to a scale from 0 to 
10, where 10 points were assigned to the most informative feature 

intmaximum( ),W and the scores for the remaining features were 
calculated proportionally:

int,

int,max
Score 10.i

i
W

W
= ×

As a result, each CT sign was assigned a specific maximum weight 
(score) from 0 to 10, reflecting its relative significance in predicting 
PLC injury. The final integral weights and normalized scores are 
presented in Table 5.

Table 5 Integral weights and normalized scores for the A1–A2 group

Feature Gain Cover Frequency Integral 
weight

Points 
(0–10)

AIEA 0.2781 0.2003 0.1769 0.233 10.0
A/P ratio 0.2343 0.1693 0.1538 0.198 8.5
AED 0.1083 0.1941 0.2231 0.158 6.8
SPF 0.1296 0.1157 0.1000 0.120 5.2
GA 0.0713 0.0736 0.0769 0.073 3.1
HU 0.0468 0.0775 0.0846 0.064 2.7
CA 0.0319 0.0719 0.0846 0.055 2.3
AVH ratio 0.0404 0.0456 0.0462 0.043 1.8
FBF 0.0413 0.0192 0.0154 0.029 1.3
Atype A2 0.0181 0.0327 0.0385 0.027 1.2

As shown, the largest cumulative contributions come from the 
AIEA (10 points) and the A/P ratio (8.5 points). These two indices 
reflect the severity of the wedge compression of the vertebral body, 
which, as expected, is a key risk factor for PLC injury: significant loss 
of anterior height (low A/P ratio) and an acute interspinous expansion 
angle (small AIEA) are characteristic of severe compression traumas 
often accompanied by posterior ligamentous rupture.

The third most significant factor was a spinous process fracture 
(SPF) (5.2 points). This sign itself increases the probability of 
ligamentous injury, serving as a direct indicator that the posterior 
structures were subjected to critical loading. However, its weight was 
roughly half that of the angular deformities. This reflects both the fact 
that an isolated SPF does not always involve a complete PLC rupture 
and its relatively low frequency in the sample.

Following in significance are anterior fragment displacement 
(AED, 6.8 points), Gardner angle (GA, 3.1 points), and bone density 
(HU, 2.7 points). The informativeness of the GA was relatively low in 
the presence of stronger predictors, likely due to its high correlation 
with wedging parameters (AIEA and A/P). Bone density (HU) 
had limited weight: low HU values (<150), typical of osteoporotic 
changes, were associated with a decreased probability of PLC injury, 
while high values (≥185) showed a moderate increase.

This observation reflects the biomechanics of the injury: in bone 
with low mineral density, a vertebral body fracture can occur under 
relatively low kinetic energy, primarily destroying the trabecular 
framework of the anterior columns while the PLC remains intact. 
Conversely, in patients with high bone density, a fracture requires 
much higher intensity forces, which involve both compression and 
distraction loads that damage the ligamentous apparatus.

The Cobb angle (CA) scored only ~2.3 points, supporting our 
hypothesis that in pure compression fractures (A1–A2), segmental 
kyphosis is usually minimal, and CA values do not differ significantly 

between cases with intact or ruptured PLCs. Low scores were also 
observed for the free bone fragment (FBF, ~1.3) and the relative 
anterior wall height (AVH ratio, ~1.8). The presence of an A2-
type fracture (versus A1) also had almost no impact on the model 
(1.2 points), indicating that formally categorizing a fracture as 
“burst” without considering specific morphometric parameters is 
uninformative for assessing the PLC.

Overall, the integral analysis confirms that the determining 
risk factors for posterior complex rupture in compression fractures 
are the degree of vertebral body deformity (wedge geometry) and 
damage to the posterior bony structures (spinous process). Secondary 
characteristics only refine the diagnosis but do not play a decisive 
role.

Development of the scoring scale

Based on the derived weights and primary data, a quantitative 
prognostic scale was constructed to assess the risk of PLC injury using 
CT data. For each quantitative feature, an automated partitioning of 
its value range into several ordered intervals was performed using 
supervised binning (a decision-tree-based algorithm). This ensured a 
monotonic increase in the frequency of PLC injury from “favorable” 
to “unfavorable” values.

As a result, intervals were defined for AIEA (thresholds near 90°, 
86°, 82°, 78°, and 74°), A/P ratio (near 0.75, 0.70, 0.65, 0.60, and 
0.55), and other parameters. Validation confirmed that these intervals 
exhibit a consistent monotonic increase in PLC injury frequency as 
the indicators worsen: for instance, at AIEA ≤ 74° or A/P ≤ 0.55, the 
probability of injury reached its maximum, while at AIEA ≥ 90° or 
A/P > 0.75, injury cases were virtually absent.

Each interval was assigned a fixed number of points, with the scale 
for each feature ranging from 0 (minimum risk) to a maximum equal 
to its integral weight (see Table 5). Thus, the contribution of each 
feature to the total score was proportional to its informativeness: the 
most significant feature, AIEA, could contribute up to 10 points, the 
A/P ratio up to 8.5 points, and less significant parameters contributed 
fewer points. The developed gradations and corresponding risk scores 
are presented in Table 6.

Table 6 Prognostic scoring scale: feature gradations and assigned points (A1–
A2 Group)

Feature (unit) Value  interval Points

AIEA (°)
(Acute interspinous 
expansion angle)

≥ 90 0.0
< 90 and ≥ 86 2.0
< 86 and ≥ 82 4.0
< 82 and ≥ 78 6.0
< 78 and ≥ 74 8.0
< 74 10.0

A/P ratio
(Anterior-to-posterior 
height ratio)

> 0.75 0.0
≤ 0.75 and > 0.70 1.7
≤ 0.70 and > 0.65 3.4
≤ 0.65 and > 0.60 5.1
≤ 0.60 and > 0.55 6.8
≤ 0.55 8.5

AED (mm)
(Anterior fragment 
displacement)

< 1.0 0.0
≥ 1.0 and < 2.0 1.4
≥ 2.0 and < 3.0 2.7
≥ 3.0 and < 4.0 4.1
≥ 4.0 and < 6.0 5.4
≥ 6.0 6.8
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SPF
(Spinous process 
fracture)

No 0.0

Yes 5.2

GA (°)
(Gardner angle)

< 10 0.0
≥ 10 and < 12 1.0
≥ 12 and < 14 2.1
≥ 14 3.1

CA (°)
(Cobb angle)

< 10 0.0
≥ 10 and < 12 0.8
≥ 12 and < 14 1.5
≥ 14 2.3

AVH ratio
(Anterior vertebral 
height ratio)

> 0.80 0.0
≤ 0.80 and > 0.75 0.6
≤ 0.75 and > 0.70 1.2
≤ 0.70 1.8

FBF
(Free bone fragment)

No 0.0
Yes 1.3

A-type
(AO spine subtype)

A1 0.0
A2 1.2

HU modifier
(Mean bone density)

< 150 (Osteoporotic) −2.7
150–185 (Normal) 0.0
≥ 185 (High density) +2.7

Note: The HU value acts as a bone quality modifier.

The total prognostic score for a specific patient is calculated by 
summing the scores of all individual features. This Total Points value 
is then converted into a probability of PLC injury using a simplified 
logistic regression model:

0 1logit( ) TotalPoints,PLCP β β= + ×

where coefficients 0β  and 1β  were determined based on 
the training sample. This approach ensures a strictly monotonic 
relationship: a higher total score directly correlates with a higher 
predicted risk.

According to the logistic regression analysis, the Total Points was a 
statistically significant predictor of PLC injury. Each additional point 
was associated with a 31% increase in the odds of injury (OR = 1.31; 
95% CI: 1.10–1.57; p < 0.05). An increase of 5 points corresponded to 
a 4-fold increase in odds, while an increase of 10 points resulted in a 
more than 16-fold increase.

Validation of the scoring model yielded an AUC of 0.944 (Figure 
5A), which is significantly higher than the original XGBoost model 
(0.836). Thus, the integral scale based on key parameters not only 
simplified the algorithm but also enhanced prognostic accuracy. 
Furthermore, the score-based model demonstrated excellent 
calibration: as shown in Figure 5B, the bootstrap-corrected calibration 
curve stays close to the diagonal, indicating ideal probability matching 
in the 10% to 80% range.

Quantitatively, the Mean Absolute Error (MAE) for calibration 
was 0.041, the Mean Squared Error (MSE) was 0.0032, and the 90th 
percentile of absolute error was 0.097. These metrics confirm the high 
precision of the risk estimates.

Prognostic nomogram

To visualize the developed scoring scale, a nomogram was 
constructed, linking CT feature values with the total score and the 
probability of PLC injury (Figure 6).

Figure 5 Performance characteristics of the score-based prognostic model. 

(A) ROC curve with 95% confidence band; AUC with 95% CI; 

(B) Calibration plot of the logistic model: P(PLC injury)∼Points.

Figure 6 Prognostic nomogram for estimating the individual probability of 
PLC injury in AO Spine type A1–A2 fractures.

Discussion
In the present study, we proposed a quantitative CT-based model 

for assessing the risk of posterior ligamentous complex (PLC) injury 
in AO Spine type A1–A2 fractures of the thoracolumbar junction. The 
developed scoring scale and the resulting nomogram demonstrated 
high discriminatory power and excellent calibration, outperforming 
the original gradient boosting model in predictive accuracy. Below, 
we discuss the potential reasons for this result, the specifics of its 
practical application, limitations, and a comparison with existing 
approaches to PLC assessment.

Rationale for the superiority of the scoring scale

The transition from the “black box” of a machine learning model 
to an explicit scoring scale in our study was accompanied by a 
significant increase in prognostic quality. This can be explained by a 
combination of statistical and clinico-biomechanical factors.39

First, the discretization of continuous parameters and the use 
of fixed thresholds act as a form of stringent regularization. Within 
each scale interval, individual feature variability is ignored; only 
the assignment to a specific risk tier is considered. This minimizes 
the impact of random measurement noise and reduces the variance 
of estimates in small datasets. While this approach increases model 
bias by simplifying relationships, the overall bias-variance tradeoff 
remains favorable, thereby enhancing prognostic stability.40

Second, the scoring scale is grounded in monotonic, clinically, 
and biomechanically sound relationships. An a priori defined order 
of influence (where more pronounced morphological disruption 
corresponds to a higher score) guides the model within physiologically 
plausible trauma scenarios. Consequently, this prevents the formation 
of spurious or difficult-to-interpret patterns that a flexible machine 
learning model might identify in a limited dataset. This renders the 
scoring model both interpretable and less prone to overfitting.41

https://doi.org/10.15406/mojabb.2026.10.00237


CT-based assessment of posterior ligamentous complex integrity in AO spine type A1–A2 thoracolumbar 
junction fractures under conditions of diagnostic uncertainty

18
Copyright:

©2026 Nekhlopochyn et al.

Citation: Nekhlopochyn OS, Verbov VV, Nykyforak ZM, et al. CT-based assessment of posterior ligamentous complex integrity in AO spine type A1–A2 
thoracolumbar junction fractures under conditions of diagnostic uncertainty. MOJ App Bio Biomech. 2026;10(1):10‒20. DOI: 10.15406/mojabb.2026.10.00237

Third, converting features into scores significantly reduces 
multicollinearity. Redundant indicators are either assigned a capped 
influence ceiling or excluded entirely.42 Specifically, vertebral body 
height ratios (AVH ratio) and segmental kyphosis (Cobb angle, CA) 
were assigned relatively low maximum scores, while interspinous 
distance parameters (ISD/ISA) were excluded. This eliminates 
the “double counting” of the same effect—such as compression or 
kyphotic deformity—across different metrics, making the final index 
more specific.43

Furthermore, the scale’s structure reflects the key pathomechanical 
mechanisms of Type A1–A2 fractures. The leading role is played by 
anterior wedge deformity, described by the AIEA and the A/P ratio, 
while the posterior complex remains intact. Risk assessment is further 
refined by signs of posterior column involvement, such as a spinous 
process fracture (SPF) and fragment displacement (AED). In contrast, 
a flexible model without a priori constraints does not distinguish 
the clinical significance of specific feature combinations and may 
overestimate irrelevant associations in small samples.44

Finally, discrete threshold gradations enhance the model’s 
robustness against measurement errors. Minor discrepancies of ±1 
mm or ±1° typically do not shift a feature into a different interval 
and, therefore, do not alter the final score. This reduces sensitivity to 
inter-observer variability and establishes a foundation for the scale’s 
application in multicenter settings.45

Practical application of the nomogram

The practical implementation of the identified patterns is realized 
through a scoring scale and a nomogram designed for bedside clinical 
use. The nomogram enables clinicians to determine the contribution 
of each CT parameter using linear scales and convert the cumulative 
score into the probability of a PLC injury.

The application algorithm involves a sequential score assessment 
for each feature, summation of the resulting values, and identification 
of the corresponding PLC injury probability. Quantitative parameters 
are assessed using graduated scales, while binary features (presence/
absence) are assigned a fixed score. The resulting Total Points is 
mapped against the probability scale, providing a quantitative risk 
estimate.46

Our clinical experience suggests that even in cases of formally 
‘stable’ type A2 compression fractures according to the AO Spine 
classification, the cumulative score often corresponds to a high 
probability of PLC injury. In such instances, the model highlights the 
necessity for additional verification of the posterior ligaments (e.g., 
via MRI), which may lead to a reassessment of the surgical strategy.

Characteristics and limitations of the methodology

Despite the demonstrated advantages, the proposed approach has 
several limitations that should be considered during its interpretation 
and clinical application.

First, the scale is based on fixed thresholds calculated for a 
specific study cohort of Type A1–A2 fractures. Altering the interval 
boundaries or including new features would require recalculating the 
weighting coefficients and updating the nomogram. Consequently, the 
scale’s applicability is primarily limited to conditions similar to the 
original research data.47

Second, the model incorporates bone mineral density (HU) as 
a modifier that adjusts the final score independently of the fracture 
geometry.48 For a given morphology, lower bone density is associated 
with a decreased calculated risk, while high density increases it.49 

This factor should be interpreted with caution, considering potential 
variations in HU measurement techniques and the influence of CT 
technical parameters.

Third, the model was specifically developed for compression 
injuries without obvious distraction or rotation. Extrapolating these 
results to Type B distraction injuries or more complex fragmentary 
Type A3–A4 fractures requires separate validation, as the risk factor 
patterns and the nature of PLC disruption in those groups differ 
substantially.11

An additional limitation is the potential for missing data. In 
clinical practice, it is not always possible to accurately measure all 
parameters (e.g., bone density or angles when endplate contours are 
poorly defined). In such cases, using neutral values or a “worst-case 
scenario” approach is permissible, though wider adoption of the scale 
will require standardized rules for handling missing data.

Given the single-center design and internal development of the 
scoring thresholds, the apparent performance may be optimistic; 
external validation is required.

Finally, the discretization of features inevitably leads to some loss 
of information. Patients with borderline values receive the same score 
despite slight differences in actual risk. Nevertheless, such simplified 
gradation is justified by its clinical utility and the robustness of the 
assessment.

Accordingly, the present results should be regarded as an initial 
methodological validation rather than a definitive universal model, 
with extension to A3–A4 Type injuries requiring separate model 
development and validation.

Comparison with existing approaches

The results of this study should be viewed within the context of 
current strategies for assessing PLC injury. While MRI remains the 
“gold standard” for diagnosing posterior ligamentous ruptures, and 
classification systems such as TLICS directly incorporate PLC status 
to determine injury stability, MRI may be unavailable or delayed in 
acute trauma settings.50 This necessitates the search for reliable CT-
based risk criteria.

Previously proposed approaches generally rely on identifying 
individual “red flag” signs on CT or their simple combinations. It has 
been demonstrated that no single sign possesses sufficient diagnostic 
accuracy on its own, whereas the presence of multiple signs 
significantly increases the probability of PLC injury.20 However, such 
binary schemes do not account for the graduated impact of deformity 
severity and fail to provide a quantitative risk assessment.

The nomogram proposed in this study is distinguished by its 
consideration of the weighted contributions of both qualitative and 
quantitative deformity parameters. The inclusion of continuous 
variables, such as AIEA and the A/P ratio, allows for a more precise 
reflection of the degree of compression than simple threshold criteria. 
Compared to previously published CT-based scoring systems that 
demonstrated moderate accuracy, our developed scale showed superior 
discriminatory power while maintaining full interpretability.21

Unlike complex machine learning algorithms, the nomogram 
remains transparent to the user: the contribution of each feature to the 
final risk is easily traceable and can be correlated with the patient’s 
clinical presentation. Thus, the proposed approach occupies a middle 
ground between simple classification rules and high-dimensional 
“black boxes,” combining quantitative objectivity with clinical 
interpretability.41
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Clinical significance

The proposed CT→PLC model serves as a practical decision-
support tool, enabling a quantitative assessment of the risk of posterior 
ligamentous complex injury during the primary CT evaluation. The 
use of the scoring scale and nomogram facilitates more accurate 
stratification of patients with thoracolumbar compression fractures.

A high cumulative score indicates a significant probability of 
PLC injury and can justify a more proactive diagnostic and treatment 
strategy, including MRI or early surgical stabilization. Conversely, a 
low calculated risk may allow for the omission of additional imaging 
and invasive interventions. Ultimately, the implementation of such a 
model in clinical practice can optimize patient triaging, reduce the 
number of unnecessary MRI scans, and lead to more evidence-based 
treatment choices for thoracolumbar injuries.

Conclusion
This study developed a CT-based prognostic tool for estimating the 

probability of posterior ligamentous complex (PLC) injury in AO Spine 
type A1–A2 fractures of the thoracolumbar junction. The proposed 
point-based scoring system and nomogram provide an interpretable, 
bedside-applicable method for risk stratification in clinical situations 
where CT findings are subtle and MRI is unavailable or delayed. 
By integrating the weighted contribution of key morphometric 
parameters and indirect CT signs, the model supports more consistent 
identification of occult posterior instability and may assist in selecting 
patients who require urgent MRI and/or early surgical stabilization, 
while reducing unnecessary additional imaging in low-risk cases. 
Further multicenter external validation and assessment of clinical 
impact are required before routine implementation.
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