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Figure 1 EAM is a basic information principle of all dynamical systems in nature, from atoms to the brain.
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Editorial
The paper argues that evolving associative memories (EAM), 

that are manifested in all biological systems and realised in the 
human brain through life-long learning (LLL), can be realised in 
brain-inspired computational architectures based on spiking neural 
networks (SNN). The paper points to the importance of the duality of 
the concepts of EAM and LLL for future AI systems. 

Evolving associative memory (EAM) is perhaps one of the most 
fundamental principles of evolution in nature and in the development 
of living organisms, the ultimate result being the human brain. Still this 
principle is not much explored, neither in the brain nor in AI systems. 
EAM are natural or artificial systems that associate and capture 
incrementally and continuously related items, objects, processes 
and can be recalled using partial information. EAM are created 
continuously and manifested in all existing dynamical systems, from 
atoms, molecules and the Universe, to neural networks and the brain 
(Figure 1). 

EAMs in biological systems and more specifically in the brain 
are created through life-long learning (LLL), where structures (e.g. 
clusters) of related items in time and space are created and modified 
continuously. On the other hand, LLL relies on adding new items 
to already existing structures based on commonality and similarity, 
so that LLL and EAM are dual principles of the same process. This 
duality involves different levels of molecular and neural functions in 
the brain, such as: neurogenesis; neuromodulation; episodic replay; 
metaplasticity; multisensory integration.1 LLL in the brain is the 
ultimate inspiration for LLL in artificial systems based on neural 
networks, and more specifically, on brain-inspired spiking neural 
network (SNN) architectures, where spatio-temporal connectionist 
structures are formed and modified continuously to form evolving 
spatio-temporal associative memories (ESTAM).2–5  

As an AI machine learning model, an ESTAM is trained on a full 
set of spatio-temporal variables, but can be successfully recalled on 

only a subset of these variables measured in different time intervals. 
In addition, an ESTAM model can be further incrementally evolved 
on a new set of variables measured at different time windows. In3 
ESTAM are built with the use of evolving spatio-temporal learning 
(ESTL) methods using SNN, where existing spatial-, temporal- and 
other multimodal data are integrated to train the model. The model 
captures evolvable and explainable spatio/spectro temporal patterns 
and can be further evolved on new data.

The idea of ESTAM using a brain-inspired SNN architecture 
NeuCube has been suggested in4 and it was further developed in.3 A 
NeuCube model processes information represented as spikes, forming 
binary time sequences. It has a 3D structure that is initialised using 
a brain template for brain data applications, but in general it can be 
initiliased in a different way, still accounting for similarity of input 
temporal variables.6 LLL in NeuCube is achieved in a connections 
way, where new connections are created and updated all the time and 
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they can be recalled/activated using only partial input information 
based on the “synfire”7 and polychronisation8 principles. To 
achieve LLL in a brain-inspired SNN architecture, several methods 
can be used in a concert, such as: integrated spike-time and error 
backpropagation learning;5,9 neuromodulatory synaptic connections;10 
synaptic weight regulation;5 homeostasis;11 Lyapunov energy 
function;12 evolving classifiers, where output neurons are evolved 
and aggregated continuously from data.13 A NeuCube based ESTAM 
learns through transfer learning, always evolving and reporting fuzzy 
spatio-temporal rules.14,15

A major advantage of building EAM with SNN through LLL is that 
such models are continuously trainable on new multimodal data and 
can be recalled on smaller data sets and missing modalities, allowing 
for efficient and early future event prediction. This has already been 
demonstrated on several AI problems, such as: brain neuroimaging 
data classification;16 moving object recognition using audio-visual 
data;5 financial and economic data prediction;17 and other. LLL and 
EAM at a personal level are key concepts for the process of aging-
well and perhaps for reverse aging18,19 and definitely, major concepts 
to be achieved in future AI systems.
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