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Introduction
Having unique physical and chemical properties such as 

extremely high tensile strength and rigidity, combined with very 
low density, makes CNTs an essential part of all industrial fields. 
Nanotubes are critical members of the design and fabrication of 
nanoelectromechanical systems.1 Microelectromechanical and 
nanoelectromechanical systems are the essential applications of 
piezoelectric generators.2 Surface effects are other phenomena that 
occur due to the static balance of atoms on the surface.3 These effects 
on elastic bodies are divided into three categories: surface tension, 
residual surface stress, and surface density.4 Indeed, surface effects 
will play a serious role when the surface-to-volume ratio increases.5–6 
Finally, surface effects may have an important role in the vibration 
analysis of nanotubes.7–8

The damped forced vibration of SWCNTs was analyzed using a 
new shear deformation beam theory.9 In this new shear deformation 
beam theory, there was no need to use any shear correction factor, 
and also the number of unknown variables was the only one that was 
similar to the Euler-Bernoulli beam hypothesis. The torque effect of an 
axial magnetic field on a functionally graded (FG) nano-rod has been 
studied to capture size effects under magnetic field using Maxwell’s 
relation.10 As an important result of this study could be mentioned that 

an FG nano-rod model based on the nonlocal elasticity theory behaves 
softer and has a smaller natural frequency. Investigation of free 
vibration of viscoelastic nanotube under longitudinal magnetic field 
also was studied in recent years.11 According to a deep investigation 
on the natural frequencies and effect of different parameters such as 
the nonlocal parameter, structural damping coefficient, material length 
scale parameter, and the longitudinal magnetic field, the results of this 
research may be helpful for understanding the potential applications 
of nanotubes in Nano-Electromechanical System. Many studies in the 
literature are focused on the investigation of the vibration analysis 
of nanostructures in an elastic medium. The vibrational response of 
a SWCNT member considered in an elastic medium to transport a 
viscous fluid,12 Investigating the vibration of a DWCNT embedded 
in an elastic medium despite initial axial forces,13,14 Investigating the 
vibration of nanotubes in conditions where the surrounding medium 
is considered elastic,15 investigating the nonlinear free vibration of a 
DWCNT member considering the von Karman assumption in order 
to apply nonlinear effects and nonlinear,16 nonlinear vibration of a 
DWCNT by C-C boundary condition in an elastic medium using the 
nonlinear van der Waals forces, and also the von Kármán geometric 
to consider nonlinearity,17 Investigating the forced vibration of 
a DWCNT with the potential to carry a moving nanoparticle,18 

investigation of the nonlinear vibration of an MWCNT in thermal 
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Abstract

In the present work, damped free and forced vibrations of single-walled piezoelectric 
carbon nanotubes under longitudinal magnetic field due to surface effects surrounded on 
a non-linear viscoelastic medium using the nonlocal Euler-Bernoulli beam theory and 
multiple time scales method are investigated. Lorentz force equation is used to obtain the 
vertical force due to the applied voltage to the system. The surface effects as well as a 
combinational non-linear viscoelastic foundation are considered, and finally, the dynamic 
equilibrium equations are used, and non-linear equations of motion are extracted. In the 
following, the Galerkin and multiple time scales methods are used, and finally, analytical 
solutions are extracted as the non-linear free and forced vibrational responses of the system. 
The relevant coefficients of the extracted analytical solutions are discovered for two both 
simple support (S-S) and clamped (C-C) boundary conditions. In the following, , and the 
effects of the different parameters such as non-local parameter as well as electric-magnetic 
fields, effect of hardness-linear damping parameters of nonlinear considered viscoelastic 
foundation, applied magnetic field, base modes for different forms considering surface 
effects, and etc. will be studied. As one the results of this study, the presence of a non-
local parameter has increased the curvature deviation to the right and the stiffening effect. 
In other words, the non-local parameter is a factor to increase the nonlinear effect of the 
system. Also, it is predictable that as the load affect position moves away from the center of 
the single-walled piezoelectric carbon nanotube toward the supports, the amplitude of the 
dynamic response decreases significantly, and this relative reduction is greater for the C-C 
boundary condition than for the S-S boundary condition. It is also important to note that the 
location of the load has no effect on the rate of deviation of the curve peak, and the degree 
of nonlinearity of the vibrational response of the system. 

Keywords: nonlocal euler-bernoulli beam theory, non-linear non-local damped 
forced vibration, viscoelastic piezoelectric carbon nanotubes, magnetic field, non-linear 
viscoelastic foundation, surface effects
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environments,19 vibration analysis of an MWCNT by thermal 
effects, and also considering the size effects on the large amplitude,20 
studying free vibration of SWCNT with elastic effects for different 
boundary conditions,21 vibration of SWCNT with an elastic medium 
due thermal conditions,22 thermal-mechanical effects consideration 
to study vibration and buckling instability of a SWCNT that carry 
out fluid, and also is rested on an elastic foundation,23 electro-
thermo-mechanical effects consideration to study vibration of boron 
nitride nanorod that is in elastic medium by non-uniform and non-
homogeneous properties,24 buckling analysis of SWCNT on a 
viscoelastic foundation for different boundary conditions,25 buckling 
investigation of SWCNT under thermal effects that is in an elastic 
medium with one elasticity parameter,26 and buckling behavior of 
single-walled CNT considering thermal effect in an elastic medium27 
were studied using non-local theory of elasticity. another theory that 
can be considered as size-dependent continuum theories, and also 
can be used to study the electro-thermal transverse vibration of CNT 
in an elastic medium was presented based on the non-local shell 
theory as well as piezoelasticity properties of system.28 Continuum 
shell theory by considering nonlocal effects was used to study free 
vibration of single-walled carbon nanotubes by non-homogenous 
elastic medium.29 Using multiple elastic models of beams as well 
as continuum mechanics theory, non-linear free vibration of multi-
walled carbon nanotubes was studied.30 Nonlinear vibration as well as 
thermal stability and of pre/post buckling due to temperature effects, 
and also size-dependent FG beams designed on an elastic foundation 
was studied based on the modified couple stress theory.31 The multiple 
time scales method, as a perturbation method, is known as an efficient 
technique in nonlinear differential equations analysis. Multiple scale 
method was used to study free and forced vibration of beams as well as 
DWCNT on an elastic medium by considering geometric nonlinearity 
and S-S boundary condition.32–34 Non-local elasticity theory was used 
to study tensioned nanobeam nonlinear vibration with considering 
various boundary conditions.35,36 The non-local Euler–Bernoulli theory 
of elasticity37 can be considered as a theory to modify nanoscale as 
well as nanostructers models that greatly has been used in modelling 
carbon nanotubes due to the size-effects in nanoscale behavior. 
Several references in the literatures can be found on the basis of the 
nonlocal theory of elasticity.38,39 In some of the recent relevant papers, 
the nonlinear frequency response of single-walled carbon nanotubes 
to primary resonance has been studied based on the nonlocal Euler-
Bernoulli beam theory.40–48 The nonlocal Euler–Bernoulli elasticity 
theory also has been greatly used to study Nonlocal instability of 
cantilever piezoelectric carbon nanotubes by considering surface effects 
subjected to axial flow,49 Linear free vibration analysis of piezoelectric 
SWCNTs that the results are extracts considering linear part of a new 
general nonlinear viscoelastic foundation without considering external 
force,50 Vibration analysis of piezoelectric nanowires with surface 
and small scale effects,51 Flexoelectric and surface effects on size-
dependent flow-induced vibration and instability analysis of fluid-
conveying nanotubes based on flexoelectricity beam model52, and 
Size-dependent nonlinear vibration of functionally graded composite 
micro-beams reinforced by carbon nanotubes with piezoelectric layers 
in thermal environments.53 Consequently, due to lots of the presented 
works in the literature, the objective of the present work is to study 
damped free and forced vibration of single-walled piezoelectric 
carbon nanotubes under longitudinal magnetic field considering 
surface effects resting on a non-linear viscoelastic foundation based 
on the nonlocal Euler-Bernoulli beam theory as well as multiple 
time scales and Galerkin methods. A theoretical and numerical 
study on non-linear nonlocal free and forced vibration responses 
are performed. This study, considering surface effects, develops 

a theoretical response for the non-linear nonlocal vibration of 
piezoelectric carbon nanotubes located on a non-linear viscoelastic 
foundation, and attenuation factors due to the external magnetic field 
and piezoelectric voltage Using Galerkin and multiple time scales 
methods. Surface effects, which harden the surface of nanotubes, are 
created by the formation of homogeneous masses by Van forces in the 
waltz. In the following, considering different boundary conditions of 
the system (S-S and C-C), the relevant coefficients of the developed 
analytical response are determined. Finally, the vibrational response 
parameters such as Amplitude-frequency response curves of nonlinear 
forced vibration, and etc. will be generally investigated for different 
boundary conditions, and the effects of the different parameters 
such as non-local parameter and electric-magnetic fields, Effect 
of hardness-linear damping parameters of viscoelastic foundation, 
applied magnetic field, base modes for different forms considering 
surface effects, and etc. will be studied.

Mathematical modelling and formulations
 Scheme of the considered system 

Figure 1 shows structural schematics of a piezoelectric single-
walled carbon nanotube with an inner diameter d , outer diameter D
, thickness h , length L , mass per unit length m , and elastic modulus
E , subjected to voltage V and a magnetic field of magnitude xH . 
This nanotube, subjected to a harmonic external point load, resting on 
a nonlinear viscoelastic foundation. Figure 2 shows discrete model of 
the single walled carbon nanotube by coordinate system.

Figure 1 Scheme of the single-walled piezoelectric carbon nanotubes under 
longitudinal magnetic field subjected to voltage V and resting on nonlinear 
viscoelastic foundation with surface layer.

Figure 2 Scheme of the discrete model of the single walled carbon nanotube 
by coordinate system.
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To adequately understand, it is necessary to investigate some 
fundamental issues and identify the primary mechanism of these 
advanced systems.

Non-local effects

Generally, nanoscale or microstructure analysis methods can be 
classified into three categories: molecular simulation, non-classical 
continuous environment, and multi-scale.54 The molecular simulation 
methods, which simulated atoms and their bonds, investigate 
nanostructures’ behavior more profound than other methods. The 
high computational volume of this method makes it possible to 
simulate only small nanostructured dimensions using this method.55,56 
Molecular methods are divided into quantum mechanics, molecular 
dynamics, and molecular mechanics.57 Complex energy functions 
are used to explain the motion of elementary particles in quantum 
mechanics. However, this method is associated with computational 
limitations due to the complexity of the equations used. In the molecular 
dynamics method, the motion of atoms is studied concerning their 
adjacent bonds. Atoms are known as rigid particles that are affected by 
the potential field of neighbouring atoms. The last one, the molecular 
mechanical method, is based on the displacement of interatomic bonds 
with beam and spring elements. Potential energy can express the field 
of interatomic forces in atomic structures. Equalizing the beam and 
spring elements’ potential energy and strain energy, the mechanical 
properties are obtained equally. In classical theory, the stress state 
at a particular point can be calculated if the strain state is known at 
that point. Whereas, in non-classical theory, such as non-local tension 
theory, the strain state must be known throughout the range to obtain 
the stress state at a particular point. All other proposed theories based 
on non-classical continuum mechanics, including strain gradients 
and coupled stress theories, relate to two-dimensional elasticity.58–60 
Therefore, nonlocal stress tensor can written as follows:61,62

( ) ( ) ( ), 
V

X k X X T X dVσ τ′ ′= −∫                                                                (1)

( ) ( ) ( ):T X C X Xε=                                                                  (2)

That ( )Xσ is nonlocal stress tensor at point X , ( ), X X τ′ −  is 
nonlocal modulus, τ is a material constant, ( )T X is classical stress 
tensor, is ( )Xε strain tensor and ( )C X is elasticity tensor. Because of 
that solving of the integral constitutive Equation (1) is complicated, a 
simplified differential for is greatly used as follows: 

( )2 2 21 , T lµ σ µ τ= − ∇ =                                                           (3)

Where µ is non-local coefficient and is 2∇  Laplacian operator. 

Also, τ and l are material constant.61 Finally, nonlocal stress tensor 
for a beam must satisfy equation (4):

( ) ( ) ( ) ( )
2

2
2

X
X l E X

X
σ

σ τ ε
∂

− =
∂

                                             (4)

Where is a constant that known as the classical elasticity modulus. 

Now, using the existing stress relations in the non-local theory, the 
relationship between the local bending torque ( ),lM x t  and the non-
local torque ( ),nlM x t  at the cross section of the nanotube is written 
as follows63:

( ) ( ) ( )
2

2
21 , ,nl ll M x t M x t

x
τ

 ∂
− =  ∂ 

                                           (5)

In equation (5), ì  is the parameter of the nanotube size scale, 
which is also known as the non-local parameter.

 External force related to Lorentz force and the effect 
of the magnetic field

Assume ( ), ,U u v w=


 as the displacement field of the 

nanostructure; the Lorentz force lf  is equal to64:

( ) lf J Hη= ×
  

                                                                            (6)

Where J stands for the current density and H is the magnetic 
field strength vector in the environment. Also, in equation (6):

J h= ∇×


 (7)

That:

( )h U H= ∇× ×
  

                                                                         (8)

Therefore, by considering longitudinal magnetic field:

x x x
v w v wh H i H j H k
y z x x

 ∂ ∂ ∂ ∂
= − + + + ∂ ∂ ∂ ∂ 

                                         (9)

2 2 2 2 2 2 2 2

2 2 2 2x x x
v w v w w v v wJ H i H j H

x z x y y z y zx z x y
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + − + + + + +          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂     

  
             (10)

Finally, the Lorentz force is:
2 2 2 2 2 2

2 2
2 2 2 20l x y z x x
v v w w w vf f i f j f k i H j H

y z y zx y x y
η
    ∂ ∂ ∂ ∂ ∂ ∂

= + + = + + + + + +       ∂ ∂ ∂ ∂∂ ∂ ∂ ∂     

          (11)

Therefore, along the , ,x y z directions:
0xf =

2 2 2
2

2 2y x
v v wf H

y zx y
 ∂ ∂ ∂

= + +  ∂ ∂∂ ∂ 

2 2 2
2

2 2 ,z x
w w vf H

y zx y
 ∂ ∂ ∂

= + +  ∂ ∂∂ ∂ 
                                               (12)

Therefore, considering ( ) ( ), , , ,w x y z t w x t= ,the vertical force 
affecting the lateral vibration per unit length of the Euler-
Bernoulli nanotube is according to the following equation:

( )
2

2
2 lz z x

A

wF f dA AH
x

η ∂
= =

∂∫                                                            (13)

Applied force from nonlinear viscoelastic foundation

In this study, vibration analysis of SWCNTs embedded in 
viscoelastic medium is presented. In this case, it is assumed that 
the chemical bonds of SWCNT to be formed generally between the 
external surface of the carbon nanotube and the viscoelastic medium 
(see Figures 1 and 2). In this study, the present viscoelastic foundation 
has linear Winkler stiffness, nonlinear stiffness, linear viscosity 
damping, and the attenuation is nonlinear. Therefore, in the present 
work, the force coming from the nonlinear viscoelastic medium could 
be considered in the general form as follows:

medium linear nonlinearF F F= + =

( ) ( )linear nonlinear linear nonlineark k c cF F F F+ + + =

( ) ( )( ) ( )( ) ( )3 2
1 3 0 2

,
, ( , , ),

w x t
k w x t k w x t c c w x t

t
∂ + + +  ∂

                  (14)

That includes spring element 1k , nonlinear spring 3k , linear damper
0c , and nonlinear damper 2c .

Piezoelectric equations considering surface effects

One of the characteristics that distinguish nanomaterials is their 
surface effects. There are two essential and mechanically distinct 
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surface effects in nanostructures: surface stress and surface elasticity. 
Atoms on the surface have different bonds than atoms in the balk, 
and surface stresses lead to these atoms being at the minimum energy 
level. Also, in nanostructures, surface elasticity occurs due to the lack 
of bonded neighbors in surface atoms.65,66

According to Euler-Bernoulli beam theory, the axial and transverse 
displacement fields can be considered as follows:

0( , , , ) wu x y z t U z
x

∂
= −

∂

( ) ( ), , , , ,w x y z t w x t=                                                                  (15)
Therefore, the only nonzero (axial) strain of this beam at any point 

is expressed by the following equation:

( )20

xx 2

w x, tU z
x x

∂∂
= −

∂ ∂
                                                            

(16)

Where 0  is the axial strain applied to the structure and ( )w x,  t is 
also the transverse displacement (bending) at the desired location x
on the center plate of the nanotube. Let’s suppose zE  is the electric 
field created by the electric potential Φ  assuming that this field exists 
only in the direction of the z-axis where Z indicates the distance from 
the center of the arrow, then the relationship between the electric 
current created and the existing electric potential is:67

     zE
z

∂Φ
= −

∂                                                                             (17)

For the surface piezoelectric model, the surface-related structural 
relationships are different from the bulk volume equations. If the 
direction of polarization of the piezoelectric medium is assumed in 
the direction of the z-axis, the stress-strain structural equations related 
to the surface of the piezoelectric carbon nanotube-based on the 
relationships presented are written as follows:3–5

s 0 s s
x x 11 x 31 zc e E∈σ = σ + −                                                               (18)

s 0
x xD D=                                                                                     (19)

In equations (18) and (19), s
xσ  and s

xD  are axial surface stress and 
electric surface displacement, respectively. The parameters 0

xσ , 0
xD , 

s
31e  and s

11c  indicate the residual surface stress, the residual electrical 
displacement, the surface piezoelectric constant, and the elastic 
surface constant, respectively. On the other hand, in piezoelectric 
carbon nanotubes, the structural relationship between bulk stress and 
bulk strain would be obtained as follows:68

11 31  x x zC e Eσ ∈= −                                                                      (20)

z 31 x 33 zD e k E= +                                                                      (21)

That xσ  and zD represent the classical stress tensor component 
and the electrical displacement, respectively. Also, 11C , 31e , and 33k  
are the elastic constant, piezoelectric constant, and dielectric constant 
of nanotubes, respectively.

In the absence of free electric charge zD 0
z

∂
=

∂
, and the potential 

energy boundary conditions related to the voltage applied to the 
external environment of the nanotube is obtained from the following 
equation:

D ( ) V,   ( D/ 2)  0
2

Φ = Φ − =                                                      (22)

By placing the relation (16) in equation (18), and then placing them 

in the constitutive equations (20) and (21) as well as using Gauss’s 
law, the axial stress equations (in the local area) on the surface and 
volume of bulk nanotubes in the local space will be written as follows: 

( )22
31

x 11 0 31 11 2
33

w x, t eVC e C z 
D k x

  ∂
σ = − − +   ∂ 

                         (23)

( )2s
s 0 s s s 31 31
x x 11 0 31 11 2

33

w x, te  eVc  e C z 
D k x

∈
  ∂

σ = σ + − − +   ∂ 
               (24)

Nonlocal governing differential equation of motion for 
equivalent continuum structure of embedded SWCNT

The equations of motion for the considered SWCNT, as shown in 
Figure 1, can be extracted as follows:

( )( ) ( ) ( ) ( ) ( )2

2

V x, t ,
[ V x, t V x, t

x medium ext
w x t

dx F dx F dx Adx
t

ρ
 ∂  ∂

− + + + = 
∂ ∂ 

( ) ( ) ( )2

2

, ,
,medium ext

V x t w x t
F F A

x t
ρ

∂ ∂
− + + =

∂ ∂
                           (25)

And also for the momentum components:

( ) ( ) ( ), ,
, 0vaeff

w x t M x t
F V x t

x x
∂ ∂

+ − =
∂ ∂

                                     (26)

Where va eff mediumeffF P F= + ; that effP  is the equivalent axial force 

which includes the force induced in the system due to the application 
of axial strain, surface electric charge and the electric field created 
in the whole nanotube structure, ( ) ,  V x t is the shear force at the 
cross section and  ( ,  M x t ) is the bending moment at the cross section. 
Also, mediumF is the force applied to the system by the viscoelastic 
foundation and LzF  is the force applied in the nanotube by the 
magnetic field to the nanotube per unit length of the nanotube. m is 
also the mass per unit nanotube length. Based on volume and surface 
stresses of SWCN, the resultant bending moment can be written as 
follows for a beam model:

( )2

2

,
x x eff

A S

w x t
M zdA zdS EI

x
σ σ

∂
= + = − =

∂∫ ∫
( )224 3

31 31
11 31 2

33 33

,
64 8

s s w x te eD DE c e
k k x

π π     ∂
+ + +      ∂    

,                   (27)

where A , S are the circumference and surface area of the circular 
point of the nanotube, respectively, and effEI is the equivalent 
bending stiffness of the whole piezoelectric nanotube. The equivalent 
axial force to the nanotube due to the application of strain and electric 
charge on the volume and surface of the nanotube can be considered 
as follows:3–5

( )
2

0 s s
0 31 x 11 x 312 ( c e )

4eff
D VP E e D V

D
π ∈ ∈ = + + σ + + 

 
 ,                (28)

So, the equation of motion in local theory is developed as follows:
( ) ( ) ( ) ( ) ( )2 2 22

2
2 2 2 2

, , ,
 eff medium x

M x t w x t w x twP F A H A
x x x t

η ρ
∂ ∂ ∂∂

− − − = −
∂ ∂ ∂ ∂         

(29)

To apply the non-local effects, the equation (5) is used. First, 
equation (5) is rewritten as follows:

( ) ( ) ( )
2 2 2

2
2 2 2

,
1 ,nlM x t

l M x t
x x x

τ
 ∂ ∂ ∂

= −  ∂ ∂ ∂ 
 (30)

So: ( ) ( ) ( ) ( )2 4 2
2

2 4 2

, , ,nl nlM x t M x t M x t
l

x x x
τ

∂ ∂ ∂
= − +

∂ ∂ ∂
                   (31)

Therefore, equation (29) can be rewritten as follows:
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )4 2 2 22
2 3 2 2

1 3 0 24 2 2 2 2

, , , , ,
{ , ( , , )}  ,

nl nl

eff x
M x t M x t w x t w x t w x twl P k w x t k w x t c c w x t A H A

tx x x x t
τ η ρ

∂ ∂ ∂ ∂ ∂∂ − + − − + + + − = −  ∂∂ ∂ ∂ ∂ ∂ ,     (32)

Finally, based on the equations (25) and (26), and for a flexural 
moment and cross-sectional shear force in non-local theory space, 
the differential equation of motion of the piezoelectric single-walled 
carbon nanotube considering non-local effects is developed as follows:

( ) ( ) ( ) ( ) ( )
4 2 2 2

23 2 2
1 3 0 24 2 2 2 eff x eff ext

w w w w wEI k w k w c c w A H P A F l
tx x x t

η ρ τ∂ ∂ ∂ ∂ ∂ + + + + − − + − − ∂∂ ∂ ∂ ∂ 
 

2 2 3 2
3 2

1 3 0 22 2 2 2{ w w wk k w c c w
tx x x t x

    ∂ ∂ ∂ ∂ ∂ + + + −        ∂∂ ∂ ∂ ∂ ∂       
 
   

( ) ( )
4 4 4 2

2
4 4 2 2 2 } 0 ,x eff ext
w w wA H P A F

x x x t x
η ρ∂ ∂ ∂ ∂

− +
∂ ∂ ∂ ∂

=−
∂

            (33)

The boundary conditions of nanotubes are also expressed according 
to the following relations, as shown in figures 3:

For both side simple support:
2

20, ;  0, 0wx L w
x

∂
= = =

∂
                                                            (34)

For both side clamp support:

0, ;  0, 0wx L w
x

∂
= = =

∂
                                                             (35)

Next, the equation (33) is investigated by nonlinear equation 
solving methods, and an analytical solution for nonlinear free and 
force vibration responses are extracted extracted

Figure 3 Boundary conditions of the system: 

(a) S-S boundary condition 

(b) C-C boundary condition.

Analytical solution

Reducing the order of the equations of motion using 
Galerkin method

The Galerkin method is used to reduce the differential equations 
obtained. Therefore, the general form of vibrational response is 
considered as follows:

( ) ( ) ( )
1

,
i N

i i
i

w x t x q tϕ
=

=

=∑                                                             (36)

Where ( )i xϕ  is a mode shape function that satisfies the geometric 

boundary conditions, and ( )iq t  is the generalized time coordinates of 
the system.

By placing equation (36) in equation (33), and applying the 
Galerkin method, equation (37) is extracted:

2
2 3

0 1 2 32
i ti i i

i i i
d q dq dqm q q q fe

dt dtdt
β α β α Ω   + + + + =     

            (37)

Where:
( ) ( ) ( ) ( ) ( ) ( )4 2 2 42

1 1 1

0 0 0 0 0

L L L L L

eff i i i vertical i i i i vertical i itotal totalEI dx k dx F dx k dx F dxα ϕϕ ϕ ϕϕ µ ϕϕ µ ϕϕ= + − − +∫ ∫ ∫ ∫ ∫

( )24 '2 2 3
3 3 3

0 0 0

6 3
L L L

i i i i ik dx k dx dxα ϕ µ ϕ ϕ ϕ ϕ
 
 = − +
 
 

∫ ∫ ∫

( )22
0 0 0

0 0

L L

i i ic dx c dxβ ϕ µ ϕϕ= −∫ ∫

( )23 '2 2 3
2 2 2

0 0 0

6 3
L L L

i i i i ic dx c dx dxβ ϕ µ ϕ ϕ ϕ ϕ
 
 = − +
 
 

∫ ∫ ∫

( ) ( ) ( )22

0 0

L L

i i im A dx A dxρ ϕ µ ρ ϕϕ= −∫ ∫
                                             (38)

Solving nonlinear differential equation (the multiple 
time scales method)

The multiple time scales method, as a perturbation method, is 
known as an efficient technique in nonlinear differential equations 
analysis. In this part, the multiple time scales method is used to 
develop the nonlinear vibrational response of the system. 

Free vibration analysis

To be able to apply this method, equation (37) is rewritten in the 
following form:

( ) ( )
2

2 2 3
0 2 32 0i i

i n i i
d q dqq q q

dtdt
ε β β ω ε α

 
 + + + + =   

 
             (39)

In equation (39), ε  is a small and dimensionless parameter. In the 
multiple time scales method, we first define the following parameters 
and equations:

   ,   ,  0,1,2,n
n n

n
T t D n

T
∈ ∂

= = = …
∂

( )2
0 1 2

d D D D
dt

ε ε= + + +…

( )
2

2 2 2
0 0 1 12 2d D D D D

dt
ε ε= + + +…                                          (40)

The general form of the response is also expressed as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
0 0 1 2 1 0 1 2 2 0 1 2 0 0 1 1 0 1, , , , , , , , ,   , , , ,q t q T T T q T T T q T T T q T T q T Tε ε ε ε= … + … + … +… = … + … +Ο      (41)

Due to the attenuation in the equations of motion, the amplitude is 
expanded as the following equation:

( ) 2
0 1 2a a a aε ε ε= + + + +…                                               (42)

Therefore, the nonlinear equation of the system is rewritten as 
follows:

( )( ) ] [ ( )( )
2

2 2 2 2 31 1
0 2 1 1 3 12

d 0n
d q qa q q a q

dtdt
ε β β ε ω ε α ε

 
+ + + + = 

 
              (43)

Now, by placing equation (41) in the equation (43) and separating 
ε by different powers on both sides of the resultant equation, a set of 
differential equations will be obtained as follows:

( ) ( )
2

0 2
0 0 1 22

0
: , ,n q T T T

T
ε ω

 ∂
Ο + 

∂ 
                                             (44)

Therefore:

( )( )0 0 1 2,nq cos T T Tω γ= +                                           (45) 

Also:

( ) ( )
2

1 2
1 0 1 22

0
: , ,n q T T T

T
ε ω

 ∂
Ο + = 

∂ 

( ) ( )( ) ( ) ( )
2

2 2
0 0 0 1 2 0 0 0 1 2 3 0 0 1 2 2 0 0 1 2

0 0 1 0
2 , , , , , , , , ,q T T T a q T T T q T T T q T T T

T T T T
β α β

   ∂ ∂ ∂
− − − − +   ∂ ∂ ∂ ∂  

,       (46) 
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By placing equation (46) in equation (43):
( ) ( )( ) ( )( )2 2 2 2

0 1 0 3 0 1 2 0 2 0 1 2
1 1cos 3 3 , sin 3 3 ,
4 4n n n nD q a T T T a T T Tω α ω γ ω β ω γ+ = − + + +

( ) ( )( ) ( )( )2
1 2 0 1 2 0 3 0 1 2

1

8 3, cos , cos ,
4 4n n nT T T T T a T T T

T
γ ω ω γ α ω γ

 ∂
+ + − + 

∂ 

( )( )2
0 0 2 0 1 2

1( ) sin ,
4 n na T T Tβ β ω ω γ+ + +                                        (47) 

The condition for the solvability of the high differential equation is 
to prevent the formation of very extensive terms in the time response. 
Therefore, the coefficients of the terms ( )( )0 1 2sin ,nT T Tω γ+  and 

( )( )0 1 2cos ,nT T Tω γ+  in equation (47) should be considered equal to 
zero. This prevents the following terms from appearing in the system 
response, and does not take the vibrational response of the system to 
infinity over a long period time.

Therefore, the equations of the system are obtained as follows:

( ) 2
1 2 0 3

1
8 , 3 0nT T a

T
γ ω α

 ∂
− = 

∂ 
                                               (48) 

2
0 0 24 0aβ β+ =                                                                         (49)

By solving the equations (48) and (49) together, the unknown 
variables are obtained in the following relation:

( ) ( )
2

3 0
1 2 1 1 2

12,
32 n

aT T T Tαγ γ
ω

= +                                             (50)

So, the second-order estimation of the response will be obtained 

as follows ( )( ) ( )( )
2 2

0 3 0 2
1 0 1 2 0 1 22 cos 3 3 , sin 3 3 ,

3232 n n
nn

a aq T T T T T Tα βω γ ω γ
ωω

= + − +

            
(51)

Higher estimates can be obtained similarly. 

Forced vibration analysis (initial resonance)

To investigate forced vibrational response of the system, equation 
(37) is rewritten as follows:

( )
2

2 2 3
0 2 32

i t
n

d q dqq q q fe
dtdt

ε β β ω εα ε Ω+ + + + =              (52)

In equation (52), the excitation frequency for the initial resonance 
is according to the relation nεσ ωΩ = + , where σ is the parameter of 
deviation from resonance.

So:

( ) ( )2 2 0
0 0 0 10 iT n

nD q q A T e ωω+ = → =                                        (53) 

( ) ( )2 2 2 3 1 0
0 1 0 0 0 0 1 0 2 0 0 0 3 02 i T Tn

nD q D q D D q q D q q fe σ ωω β β α ++ = − − − − +                 (54)

By placing equation (53) in equation (54), and to prevent significant 

time response terms, the coefficient of a term 0iT ne ω  must be set equal 
to zero, resulting is the following equation:

( ) 1
3 2 0

1
2 0iT

n n n
Ai A i A i A fe
T

σω α β ω β ω∂  − − + + + = ∂
              (55)

Now, assuming the polar form
2

iaA e γ= , and placing it in the 

equation (55), the following set of equations will be obtained:

( )3
0 2 1

1 2 sin 0
4n na a f Tβ ω β ω σ γ+ − − =                                    (56)

( )3
3 1

1 cos 0
8

a f Tα σ γ− − =                                                       (57)

The frequency equation response of the system with the definition 

of 1Tθ σ γ= − , and considering that in the case of uniform response, 

the changes of a and θ will be zero. Finally, the nonlinear vibrational 
response equation is presented to the following final form in the form 
of a closed-form equation:

2 3
2 3 2 23

2 0
1 1 14  ( ) 0

16 4 16n
n

aa a fαω β β
ω

  + + − =  
   

                    (58)

Numerical results, validations and discussions
Dimensionless form of input and output parameters are considered 

by the following equations:

 ,   ,  exc
exc

fx wx w f
L L EI

= = =

2 2
 ,   ,   eff eff lz

eff eff lz
EI P L F LEI P F
EI EI EI

= = =

64
31

1 3 ,  k Lk LK K
EI EI

= =                                                                (59)

2 4
0 2

0 2 ,  c L c LC C
EIm EIm

= =

( )2
0 2

2 2 ,   ,  
e a t EI mT L

m EIL L
µ ω= = Ω =

Validation for the results of the free vibration analysis 

In this case, to validate the results with the references,69 the cross-
sectional area of the nanowire is considered to be a rectangle with 
a small thickness and height h which its length is L. On the other 
hand, in this paper, using the classical local theory, the results of free 
vibration of a nanowire coated with piezoelectric crystals of PZT-
5H for two boundary conditions, S-S and C-C, are obtained. Those 
properties are:

8
31 336.5; 1.3 10 ;e k −= − = ×

8
11 317.56; 3 10 ;s sc e −= = − ×

9126 10 ; 20 ;E L h= × =

In the following figures, the dimensionless frequency of the first 
mode of nanowire vibration in terms of its cross-sectional height for 
different values of an external voltage applied in local and non-local 
theory is compared with the results obtained in local formulation 
references.70 In the S-S boundary condition:

Figure 4  Validation for local70 and non-local (present) theory in S-S boundary 
conditions
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And also, for the C-C boundary condition:

Figure 5  Validation for local70 and non-local (present) theory in C-C 
boundary conditions

Furthermore, for the other forms of the surface effects: 

Form 1: 0
11 310 ,  0, 0s s

x c eσ ≠ ≠ ≠

Form 2: 0
11 310 ,  0, 0s s

x c eσ = = =

Form 3: 0
11 310 ,  0, 0s s

x c eσ ≠ = =

Form 4: 0
11 310 ,  0, 0s s

x c eσ = ≠ =

Figure 6 Validation for various forms of surface effects in S-S boundary 
conditions

Figure 7 Validation for various forms of surface effects in C-C boundary 
conditions.

Results of the free vibrational analysis

The effect of non-local parameter and electric-magnetic fields

In the below curves, the changes of dimensionless frequency of 
the free oscillations at the first mode with two different boundary 
conditions in terms of the applied voltage and different values 
of dimensionless non-local parameter, with input parameters

0
0 11, 0, 0, 10x xH C Kσ = = = = , are shown.

Figure 8 The dimensionless frequency change curve of the free oscillations of 
the first mode of the system in terms of the applied voltage for different values 
of the dimensionless non-local parameter of the nanotube, in SS boundary 
conditions.

Figure 9 The dimensionless frequency change curve of the free oscillations of 
the first mode of the system in terms of the applied voltage for different values 
of the dimensionless non-local parameter of the nanotube, in CC boundary 
conditions.

In the` below curves, the frequency changes of dimensionless free 
oscillations at the first mode of free vibration of the linear system for 
two different boundary conditions according to the magnitude of the 
applied magnetic field in different values of dimensionless non-local 
parameter, with input parameters 0

0 11, 0.5, 0, 10x V C Kσ = = = = , are 
shown.

Effect of hardness-linear damping parameters of viscoelastic 
foundation

In the below curves, the frequency changes of the dimensionless 
free oscillations at the first mode of the free vibration of the 
linear system for two different boundary conditions according 
to the magnitude of the linear stiffness of the foundation in 
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different forms considering surface effects, with input parameters
0 7

01, 1 10 , 0.1, 0, 1x xH C Vσ µ= = × = = = , are shown.

Figure 10 The dimensionless frequency change curve of the free oscillations 
of the first mode of the system in terms of the magnitude of the magnetic field 
for different values of the dimensionless non-local parameter of the nanotube, 
in SS boundary conditions.

Figure 11 The dimensionless frequency change curve of the free oscillations 
of the first mode of the system in terms of the magnitude of the magnetic field 
for different values of the dimensionless non-local parameter of the nanotube, 
in CC boundary conditions.

Figure 12 The dimensionless frequency change curve of free oscillations 
of the first mode of the system in terms of dimensionless linear stiffness of 
the substrate for different forms considering surface effects, in SS boundary 
conditions.

In the below curves, the frequency changes of the dimensionless 
free oscillations at the first mode of the free vibration of the 

linear system for two different boundary conditions according 
to the linear damping coefficient of the foundation in different 
forms considering surface effects, with input parameters

0 7
11, 1 10 , 0.1, 100, 0.5x xH K Vσ µ= = × = = = , are shown.

Figure 13 The dimensionless frequency change curve of free oscillations 
of the first mode of the system in terms of dimensionless linear stiffness of 
the substrate for different forms considering surface effects, in CC boundary 
conditions.

Figure 14 The dimensionless frequency change curve of real and imaginary 
parts of the special values of the first mode of the system in terms of 
dimensionless linear damping of the substrate for different forms considering 
surface effects, in SS boundary conditions.

Figure 15 The dimensionless frequency change curve of real and imaginary 
parts of the special values of the first mode of the system in terms of 
dimensionless linear damping of the substrate for different forms considering 
surface effects, in CC boundary conditions.
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Frequency results of nonlinear vibration of the non-
damped system

In the below curves, the results of the nonlinear vibration for the 
non-damped system are presented.

For 30, 0.1, 100, 0.5xH K Vµ= = = = :

Figure 16 Graph of Nonlinear Frequency to Linear Frequency Ratio of the 
Immortal System Base Mode for Different Values of the foundation Linear 
Hardness Parameter, Left: SS boundary condition, right: CC boundary 
condition.

For 1 30, 0.1, 100, 100xH K Kµ= = = = :

Figure 17 Graph of Nonlinear to Linear Frequency Ratio Changes of the 
Immortal System Base Mode for Different Values of Applied Voltage, Left: SS 
Boundary Conditions, Right: CC Boundary Conditions.

For 1 30.1, 100, 100, 0.5K K Vµ = = = = :

Figure 18 Graph of Nonlinear Frequency to Linear Frequency Ratio of the 
Immortal System Base Mode for Different Values of Applied Magnetic Field, 
Left: SS Boundary Conditions, Right: CC Boundary Conditions.

For 7
x 1 3H 1 10 ,K 100,K 100,V 0.5= × = = =

Figure 19 Graph of changes in the ratio of nonlinear to linear frequency ratio 
of the base mode of the immortal system for different values of the non-local 
parameter of the nanotube, left: SS boundary condition, right: CC boundary 
condition.

In the following two diagrams for zero voltage and negative 
voltage, nonlinear to linear frequency ratio diagrams are drawn for SS 
boundary conditions:

Figure 20 Graph of Nonlinear Frequency to Linear Frequency Ratio of 
Immortal System Base Mode for Different Forms Considering Surface Effects 
without Voltage Applied to SS Boundary Conditions.

Figure 21 Graph of changes in the ratio of nonlinear to linear frequency ratio 
of the base mode of the immortal system for different forms Considering 
surface effects with applied voltage V = -0.5, for SS boundary conditions.

Amplitude-frequency response curves of nonlinear 
forced vibration

For x 1 3 0 2 0V 0,H 0,K 0,K 50,C 0.15,C 0,x 0.5= = = = = = = :

Figure 22 Amplitude-frequency vibration curves for different values of μ (μ 
= 0 simple line, μ = 0.2 bold fold line); Figure above: SS boundary conditions, 
bottom figure: CC boundary conditions.

For: 1 3 0 00, 0, 0, 50, 0.15, 0.1, 0.5 :xV H K K C xµ= = = = = = =

Figure 23 Amplitude-frequency vibration curves for different values 
of C_2, (C_2 = 1 simple line, C_2 = 3 bold fold lines), Figure above: SS 
boundary conditions, bottom figure: CC boundary conditions.
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For: 1 3 2 00, 0, 0, 50, 1, 0.1, 0.5 :xV H K K C xµ= = = = = = =

Figure 24 Amplitude-frequency vibration curves for different values of C_0, 
(C_0 = 0.1 simple line, C_0 = 0.3 bold fold line), high: SS boundary conditions, 
low: CC boundary conditions.

For: 1 3 0 2 00, 100, 50, 0.1, 1, 0.1, 0.5 :xH K K C C xµ= = = = = = =

Figure 25 Amplitude-frequency vibration curves for different values of V, (V 
= -0.5 purple line, V = 0 blue fold line, V = 0.5 bold black), high: SS boundary 
conditions, low: CC boundary conditions.

According to the presented diagrams, the presence of a non-local 
parameter has increased the curvature deviation to the right and the 
stiffening effect. In other words, the non-local parameter is a factor 
to increase the nonlinear effect of the system. On the other hand, the 
presence of this factor reduces the maximum range of fluctuations.

Conclusions 
By comparing the graphs related to two different boundary 

conditions, the following results are inferred:

i. At the C-C boundary conditions, the diagram is collected and 
the amount of deviation to the right is reduced. For example, 
the deviation parameters for the maximum dynamic response 
for the S-S and C-C boundary condition are 0.065 and 0.0045, 
respectively. In addition, the dynamic response decreases with 
less degrees of freedom in boundary conditions. For example, in 
these diagrams, the maximum dynamic range for S-S and C-C 
are 0.79 and 0.26, respectively. Also, the damping of the system 
has a greater effect in the boundary conditions of C-C and has 
significantly reduced the sharpness of the diagram. Therefore, for 
the C-C boundary conditions, the effect of substrate damping in 
reducing the dynamic response at excitation frequencies close to 
the resonant state of the system was greater.

ii. The higher the foundation attenuation, the lower the amplitude of 
the amplitude-frequency curve, and consequently the lower the 
maximum dynamic response. Of course, it should be noted that 

the amplitude-excitation frequency curve for a system with C-C 
boundary conditions is more sensitive to the damping changes of 
the foundation than the amplitude-frequency curve of the system 
excitation of the S-S boundary conditions.

iii. As the nonlinear hardness coefficient of the substrate increases, 
the amplitude-frequency curve deviates to the right, but the 
maximum dynamic response amplitude remains constant. By 
looking more closely at the two diagrams, it could be found 
that the effect of this parameter on deviating of the diagram is 
greater for S-S boundary conditions due to more flexibility, so the 
dynamic response in the CC boundary condition is less sensitive 
to the increasing nonlinear foundation stiffness parameter.

iv. According to the obtained results, increasing the linear stiffness 
of the substrate has led to a decrease in the dynamic response 
as well as the peak deviation of the curve. Increasing the linear 
stiffness of the system reduces the nonlinear effects of the system. 
In addition, in the C-C boundary conditions, where the overall 
stiffness of the system is higher, this factor is less effective.

v. The presence of a magnetic factor, in addition to reducing the 
amplitude of the dynamic response, has led to a decrease in the 
amplitude of the peak and also a reduction in its curvature to the 
right. However, these effects have attracted more attention for 
S-S boundary conditions, which have a more flexible system than 
for C-C boundary conditions.

vi. According to the curves, it is quite clear that by changing the 
applied voltage from zero to a positive value, the response 
amplitude has increased sharply and the deviation to the right has 
increased as well. However, by changing the voltage from zero 
to a negative value, both the dynamic response amplitude and 
the peak deviation of the graph are reduced as well as nonlinear 
effects of the system. It is also important to note that under the 
same conditions these changes for C-C boundary conditions are 
much less than for S-S boundary conditions and in general it 
could be said that the sensitivity of the dynamic response curve 
of the system with C-C boundary condition to most investigated 
changes in the system input parameters such as foundation 
stiffness, voltage, and magnetic factor, non-local factor and 
surface effects are less than the sensitivity of the system with SS 
boundary conditions.

vii. It could be seen that by considering the parameter of residual 
surface stresses for the system, the response amplitude, and the 
amount of curvature deviation to the right are reduced.

viii. It is predictable that as the load affect position moves away 
from the center of the wire toward the supports, the amplitude 
of the dynamic response decreases significantly, and this relative 
reduction is greater for the C-C boundary condition than for 
the S-S boundary condition. It is also important to note that 
the location of the load has no effect on the rate of deviation of 
the curve peak and the degree of nonlinearity of the dynamic 
response of the system.

ix. Given that the voltage applied to the system is positive for the 
last two numerical diagrams. It is expected that the graph with 
the highest deviation and the lowest peak amplitude is related to 
Form 4 and the graph with the lowest deviation and the lowest 
peak amplitude is also related to Form 2. In addition, in this case, 
by comparing the two curves of Form 1 and the main form, it can 
be concluded that by considering the surface parameters (Form 
1), the maximum peak amplitude and the deviation of the graph 
have increased.
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