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Introduction
Carbon nanotubes (CNT) individually have extraordinary 

properties. However, macroscale fabric and tape made from CNTs 
have much reduced properties compared to individual CNTs. CNT 
in macroscale forms are also expensive to produce as the yield of the 
CNT synthesis process is low and assembling individual CNT into 

large size fabrics is complicated and expensive. Thus the two main 
barriers to putting CNT fabric into applications are to improve the 
material properties and to scale-up manufacturing yield to reduce 
cost. These aspects are discussed in this paper. Examples of CNT 
fabric and tape are shown in Figure 1. The tape can be twisted to form 
yarn which is stronger than tape.
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Abstract

This paper describes innovative work in the manufacturing of carbon nanotube (CNT) 
fabric and tape and how these materials can be used in textiles and fashion apparel. The 
field of CNT fabric is new and this article discusses the potential commercial impact of 
CNT fabric, the manufacturing barriers that currently exist, and provides suggestions 
to push the field towards large scale commercialization. Areas under investigation 
for commercialization of CNT fabric, tape and yarn include flexible heaters, filter 
membranes, smart textiles, electrical machines, hybrid fabric, and biomedical wire.
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Figure 1 Manufacturing CNT material using the floating catalyst method: (a) CNT sock exiting the reactor and winding onto a Teflon sheet/drum; (b) to form 
nonwoven fabric; (c) CNT sock densified by drawing through water; (d) to form tape.

Manufacturing barriers
CNT sheet or yarn materials are manufactured1 within four main 

processes: 

(i)	 Synthesis of powder CNT and using liquid dispersion and 
vacuum to form nonwoven sheet which is low cost with good 
electrical conductivity but modest strength; 

(ii)	 Substrate growth of CNT forests and dry drawing to form sheet 
or drawing and twisting to form yarn which produces material 
with high purity and good strength and conductivity, but high 
cost; 

(iii)	 The floating catalyst method that produces a spider web or sock 
of CNT that can be wrapped to form sheet or pulled and twisted 
to form yarn which have good conductivity and strength but the 
process yield is low; and 

(iv)	 Wet extrusion of CNT dispersions in super acid to form yarn 
which has high electrical conductivity and modest strength. 

Carbon Hybrid Materials1 is a modified floating catalyst method 
wherein metal or ceramic particles are integrated within the CNT sheet 
during the synthesis process.2 The properties of the hybrid material are 
being evaluated. The floating catalyst method continuously produces 
CNT sock that is wound on a drum to form sheet or tape, or twisted 
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to form yarn. This method has limitations including that the yield of 
the process is low. Larger size reactors are needed to reduce the cost 
of the material for commercialization. However, larger size ceramic 
tubes are too expensive and brittle.1 Thus a new break-out technology 
is needed to increase the throughput and reduce the cost of CNT sheet 
and yarn produced by the floating catalyst method, see Ch. 7 and Ch. 
23 in Nanotube Superfiber Materials.1

CNT continuous synthesis

The floating catalyst method is a continuous process that uses 
gas phase pyrolysis for CNT synthesis. In this process, feedstock is 
injected from one end of the ceramic tube furnace, and the synthesized 
CNT aerogel-like sock is collected at the other end in the form of sheet 
or tape. The feedstock is composed of a metal catalyst,3–5 hydrocarbon 
as a carbon source, and sulfur as a promoter. A carrier gas such as 
hydrogen, argon, helium, nitrogen or a mixture of two or more gases 
facilitate floating the atomized form of the feedstock and catalyst into 
the reactor. Also, the alignment of the ceramic tube inside the furnace 
can be either horizontal6 or vertical.7 Along with these, the synthesis 
of CNTs uses different temperatures, ranging from 800˚C8 to 1400˚C.3 
The physical properties of the synthesized CNT material are highly 
dependent on the parameters mentioned.

Material properties

CNT Fabric is nonwoven material and thus is simpler to 
manufacture than woven or knitted fabrics. CNT yarn can also be 
woven to form stronger fabric but the cost of yarn is higher than 
sheet, and the weaving process further increases cost. CNT fabric 
and yarn have properties approximately as in Table 1. The properties 
vary depending on the exact manufacturing conditions. The properties 
are satisfactory for some applications, but increasing the properties is 
the goal in order to open up more applications and to compete with 
existing fibers and textiles.

Table 1 Approximate properties of CNT nonwoven sheet and CNT yarn

Property Nanotube sheet and tapes

Tensile Strength (GPa) 0.4-1.2

Elastic Modulus (GPa) 100

Strain to failure (%) Up to 15

Electrical Resistivity (ohm cm) 2x10-4

Thermal Conductivity W/(mK)
30-100 in plane, 0.4-2 normal to the 
plane, this extreme anisotropy in thermal 
conductivity is from 78:1 to 50:1 

Sheet Resistance (ohm/square) 0.3

Seebeck Coefficient (microV/K) -60 n type, 70 p type

Density (g/cc) 0.1-1.2, depends on solvent or other 
densification

Burning Temperature in Air High resistance to flame

Property Nanotube Yarns

Tensile Strength (GPa) 2-3 (up to 4 in thin tapes)

Elastic Modulus (GPa) 200

Strain to failure (%) 4

Electrical Resistivity (ohm cm) 1x10-4

Density (g/cc) 1.1

Thermal Conductivity W/(mK) 160

Commercialization
CNT commercialization has found early success in aerospace 

and certain high value structural and electrical applications.3,4 
Characteristics providing applications value include; strong, 
lightweight, flexible, electrically conductive, and chemical & 
environmental resistance. Expansion into other applications 
requires further development and lower cost for CNT materials. 
Potential applications of CNT fabric and yarn include commercial 
products in the areas of technical textiles, fashion apparel, medicine, 
composite materials, electrical power conductors, electromagnetic 
shielding materials, carbon clothing, textile heater elements, EMI & 
ESD protection, filtration, and others. While there are hundreds of 
companies’ worldwide working with CNTs, the number of companies 
developing sheet and yarn is perhaps in the tens. A few companies 
in the USA are producing materials with different properties and 
at different price points.9–12 Other companies are using the fabric 
for applications such as electrical shielding of cables.13 Other 
applications in technical textiles and fashion apparel are listed 
in.1,14,15 CNT textiles hybridized with metal or ceramic particles are 
described in.1,15–17 Carbon nanotube sheet is used in fiber reinforced 
composite structures,6,18 for delamination detection,19 and structural 
health monitoring.20 There is enormous potential of carbon nanotube 
materials in antenna and communication applications.21–23 Also, the 
integration of CNT energy storage and super capacitor applications24–26 
is recently on the rise. Moreover, these CNT communication devices, 
energy storage devices, and super capacitors can be integrated into 
textile and fashion apparel.

Flexible heaters

Due to the excellent electrical and thermal properties of CNT 
fabric, it can be integrated into textiles for heating applications. The 
role of CNT fabric is to provide conductive pathways in a garment 
which may be a composited material (containing layers of different 
fabrics). CNT fabric’s porous nature can provide significant surface 
area of the material, and using its good mechanical properties and 
light weight, flexible CNT fabric heater material can be manufactured. 
CNT based heaters nominally use the same power as conventional 
heaters. But CNT heater fabric provides uniform heating without 
adding significant weight or size to garments. The heating temperature 
depends on the fabric thickness, length, and applied voltage. The 
resistivity of the fabric can be varied according to the application 
requirements to provide the needed power at the desired voltage level, 
per P=V2/R, where P=power dissipated as heat, V=applied voltage, 
and R=resistance of the fabric. Thus textiles may have built-in heaters.

Filter membranes

The problem of heavy metals in water has existed for a long time 
due to human activities and civilization. The metals are toxic to 
aquatic life and human beings. These pollutants do not degrade in a 
natural environment like some of the organic pollutants.27 Common 
heavy metals include Cd, Hg, Ni, Co, and Pb. Among them, lead is 
the most common noxious metal ion.28 Industrial activities like battery 
manufacturing, acid metal plating and finishing, and tetraethyl lead 
manufacturing are the major sources29 of lead. The presence of lead 
harms the kidneys, liver, and nervous and reproductive systems.28 
Therefore, it is necessary to minimize lead contamination to prevent 
potential threats to society.30 CNTs are a relatively new absorbent 
which can remove heavy metals31 such as lead ions32 from water. 
The large surface area, high porosity, hollow structure, and strong 
interaction between contaminant molecules and CNTs are key features 
of CNT membranes for absorption and filtration applications.33,34 
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The adsorption properties of CNT membranes depend on the purity, 
porosity, surface area, and surface functional groups33 of the fabric. 
The implantation of surface functional groups can enhance the 
adsorption rate of heavy metals.33 Acid treatment has been widely 
used with acids like HCl, H2SO4, HNO3, KMnO4, and H2O2.

35 Acid 
treatment introduces different functional groups onto the CNT 
membrane surface. These functional groups enhance CNT membranes 
which remove different contaminants. The adsorption capacity of acid 
treated CNT membranes is higher than that of raw CNT membranes 
because of the electrostatic interaction between the negative charge 
on the CNT’s surface and the positively charged metal ions.36,37 
In addition, acid treatment also removes impurities from the raw 
CNTs.33 Furthermore, CNT membranes can be modified with other 
nanoparticles to improve the removal efficiency for heavy metals and 
natural organic matter (NOM). Air filtration is another application 
of CNT fabric [see Ch. 26 in Nanotube Superfiber Materials1]. Thus 
textiles may have filtering capabilities.

CNT smart textile applications

The development of composite textiles utilizing CNT has 
emerged at the forefront of functional and smart textiles research. 
The integration of CNT materials can extend the capabilities of 
functional textiles and create new applications for the consumer 
market. CNT can give textiles added performance value such as 
filtration capabilities for waterborne and airborne contaminants; 
wicking and heat spreading capabilities; electrical conductivity that 
can support integrated electronic components, and the possibility 
to harness and produce power. CNT impregnated and composited 
textiles exhibit extremely light weight with modest strength which 
gives textiles that include them an edge over existing materials. CNTs 
have the potential to harness and store energy to create flexible, 
lightweight power systems that do not need electricity to operate. 
The integration of CNTs in textiles can functionalize conventional 
fabrics without changing inherent fabric properties like softness and 
flexibility, making them discreet and easily integrated into fabric 
systems. These additive properties open the door to new possibilities 
for the design of consumer-driven smart products that can monitor 
body metrics, provide improved comfort and safety for the user and 
improved performance of the material. This added value gives CNT 
an appealing edge in the emergent Smart Textiles and Wearable 
Technology markets, which is growing rapidly. Materials that are 
sensory, reactive, self-powered and performance enhancing define 
a new class of functional textiles that are intelligent. CNT materials 
integrated into textiles can perform multiple enhancement functions 
at once. This creates potential for the development of multi-functional 
products in the apparel, home, occupational and specialized personal 
protective equipment markets. 

CNT textiles in electrical machines

Copper is the most widely used conductor in electrical machines. 
However, despite having high conductivity at room temperature, the 
conductivity of copper decreases at higher temperatures thus making 
it unsuitable for high temperature operation. Moreover, copper has a 
high density of around 8.9g/cc,38 which means that products made of 
Cu carry a weight penalty. Also, when used at higher frequencies, Cu 
conductors suffer from the skin effect, a phenomenon in which high 
frequency AC current flows through the outer layer of the conductor 
effectively reducing the size of the conductor. A pioneering advance 
may be to have a machine that operates at high frequency, high voltage, 
and high temperature. It has been proposed to replace Cu conductors 
with CNT sheets, as the resistivity of CNT sheets is stable at higher 

temperatures and at the same time the structure of CNT inherently 
resembles multi-strand litz wires which are suitable for being used at 
high frequencies without suffering from the skin effect. CNT yarn also 
has a higher maximum current density than Cu wire. The downside of 
CNT wire is the high cost and it is less conductive than Cu.

CNT hybrid fabric 

The properties of CNT sheets produced using the floating catalyst 
method are satisfactory for some applications. In order to achieve 
better properties and enable greater applications, it is important to 
integrate CNT’s with nanoparticles. There are different ways in which 
CNT’s can be integrated with metal/alloy or ceramic nanoparticles 
but to do so it is important to understand the theory behind the 
integration of nanoparticles with CNT’s. Wetting and solubility are 
two important factors to be taken into consideration. CNT’s can be 
wet by low surface tension elements or compounds with a cut-off 
value of 200 millinewtons per meter (mN/m).39 Systems of metals 
belonging to group VIII also wet CNT’s due to the solubility of the 
solid phase in the liquid phase.40 Also, carbide forming metal melts 
can wet CNT’s due to their formation of chemical compounds during 
the process of synthesis of CNT’s. High surface tension liquids do not 
wet the CNT’s, and these can be used to decorate the outer surface of 
the nanotubes.41 It is also important to consider the fact that contact 
angles and wetting properties are largely dependent on experimental 
conditions. Producing CNT hybrid fabric is a new area of research 
that will enable customizing the properties of textiles.

CNT Yarn Biomedical Wire

CNT yarn is being evaluated for use as biomedical wire. CNT 
wire has been used to cross the skin to connect to sensors in mice1, to 
transmit power from a battery to an implantable device in a pig, and 
as a scaffold for regenerating neurons. Other biomedical applications 
may include reinforcing bone, powering robots, pacemaker wire, and 
others. CNT wire may be used to transmit power or to communicate 
with devices implanted in the body. The wire can cross the skin and 
connect to Smart textile apparel to monitor and record information 
from the implanted device. The wire may also take signals from 
neurons in the body and connect to wearable electronics in smart 
textiles to diagnose or treat different medical conditions.

Investing in new textile capability

In the long term, investment in CNT fabric and yarn may be 
sensible commercially in various areas. Advances have been coming 
in CNT manufacturing from various research laboratories around the 
world. Synthesis of bundles of half-meter long CNT, carbon nanotube 
hybrid materials, control of chirality to produce mostly metallic CNT, 
high quality CNT with a high Raman G/D ratio, and high strength for 
thin sheets of CNT have been reported recently. Societal, intellectual, 
and equipment capital all play into an investment strategy, but overall 
the low yield and low properties of CNT fabric are the main barriers 
to be overcome. The current cost of CNT sheet is on the order of 
five thousand dollars per pound. The need for development of larger 
reactors, including simulation, experimentation, and prototyping, 
requires large investment possibly beyond the level of university 
research laboratories. The authors anticipate that the properties of 
CNT fabric and yarn will continue to improve through the efforts 
of the many research laboratories internationally, but the research 
findings must be integrated to take advantage of all the advances. In 
summary, convergence of research findings and efforts, and significant 
capital investment in scale-up of manufacturing may bring new CNT 
fabric into mainstream commercial textile use.
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