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Abstract

Understanding human brain development remains challenging because animal models do
not recapitulate many human-specific features, and access to developing human tissue is
rare. Over the past decade, stem cell-derived 3D brain organoids have transformed this
landscape by enabling controlled modeling of fate specification, cell diversification,
migration, and emerging connectivity. Advances in patterning and culture now yield region-
specific cortical organoids that recapitulate key human cortical cell types, trajectories,
and disease-relevant phenotypes. Yet current models still struggle to capture the cortex’s
intricate architecture, long-range interactions, and extended maturation. In this review, we
highlight emerging strategies to enhance cortical organoid complexity and the physiological

relevance of their neural circuits.
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Organoids as experimental models of the
developing brain

Understanding human brain development is hampered by
a paucity of experimental models capable of recapitulating its
complexity and species-specific features. While traditional animal
models are extremely useful to study brain characteristics shared
across species, they cannot model human-specific traits such as
extended neotenic periods, cell type-specific expansions, and human-
specific cell proportions, in addition to the evolutionary expansion
of brain areas and distinct functional properties of human circuits.'?
Moreover, animals cannot feasibly model complex human genetics,
including polygenic disease states or the contribution of human
genetic background. Experimental access to the human developing
brain is limited, as most of its cell types and patterns of connections
emerge during embryonic development and early postnatal life, and
rare samples of ex vivo developing brain tissue are not amenable to
expansion in vitro (Figure 1).

Over the past decade, stem cell-derived brain models, such as 3D
brain organoids (also referred to as cerebral or neural organoids),’
have become invaluable tools to explore and perturb human brain
development. Organoid systems have undergone dramatic refinement
and growth in complexity, fidelity, and reproducibility, emerging as
powerful experimental models. These advances have been driven by
organoid protocols that rely either on intrinsic self-organization or
on external progenitor patterning (see reviews by Birtele et al.,* and
Mayhew and Singhania,’ for description of various organoid models).
These approaches enable the generation of both unpatterned cerebral
organoids, which arise through unguided differentiation and lack a
defined regional identity,*” and patterned, region-specific organoids,
such as human cortical organoids (Figure 1).*'" The development
of standardized differentiation and culture approaches has broadly
increased reproducibility in organoid systems. Human organoids
have been used to model key events of human brain development,
including fate specification, cell diversification, and migration,*!>16
and are emerging as valuable models to study circuit organization,
including long-distance connectivity.'?

In this review, we focus on cortical organoid models, as the cerebral
cortex represents a hallmark of human evolutionary expansion’

and is prominently affected in neurodevelopmental disorders.""
Cortical organoids can reliably recapitulate key features of human
cortical development, including cellular composition, diversity, and
developmental trajectories, with appropriate progenitor, neuronal, and
glial populations emerging at defined stages.*>?* These increasingly
robustmodels are well-suited to capture disease-relevant characteristics
and dissect human-specific mechanisms of cortical pathogenesis,*?!
as their predictable developmental trajectories provide greater power
to identify phenotypes linked to disorder-associated mutations and
patient-specific genetic backgrounds (Figure 1).

However, even with these advantages, cortical organoids still
encounter major obstacles when it comes to capturing the intricate
circuitry of the human cortex. Much of this challenge arises from
the difficulty of coordinating region-specific development, achieving
formation of particular structural features (i.e., cortical layers), and
sustaining growth over the long timescales required for the necessary
degree of cell and circuit maturation.

The maturation of the cells and circuits of the brain involves
multiple processes that can be defined across many axes. Organoid
studies to date have generally assessed maturation through four broad
categories: (i) cellular diversity, such as presence of distinct neural
subtypes and glial classes, (ii) molecular maturation, as evidenced
by transcriptional and epigenetic states associated with differentiated
cell populations, (iii) cellular maturation, including the presence and
density of dendritic spines and synapses, the complexity of dendritic
and glial arborization, and myelin formation, and (iv) functional
maturation, as assessed by electrophysiological properties such as
network coordination and oscillatory dynamics. However, most
studies address only a subset of these criteria, depending on the work’s
goals and guiding research questions. A comprehensive comparison
assessing each of these features across the breadth of existing models
has yet to be accomplished.

As researchers push forward, the next frontier lies in coaxing
these miniature tissues toward more authentic circuit formation and
specialization. Emerging efforts to enhance connectivity, improve
cellular heterogeneity and maturation, and broaden regional diversity
will help to advance this goal. Perhaps this is the start of a new chapter
in organoid research, one that brings us closer to in vitro models that
more faithfully mirror the brain’s remarkable complexity.
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Figure | Human brain organoids as experimental models of cortical development. In vivo models are limited by species differences, restricted access to human
tissue, and ethical and practical constraints. Human pluripotent stem cell-derived cortical organoids overcome some of these issues by offering reproducible,

region-specific models that capture important features of human corticogenesis.
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Intrinsic generation of cellular diversity and network
complexity in cortical organoids

Cortical organoids have demonstrated a remarkable capacity
to mature during long-term culture, recapitulating transcriptional
trajectories that mirror the temporally coordinated stages of fetal
brain development.'®!*?>2¢ They undergo sequential neurogenesis,
synaptogenesis, and gliogenesis, with astrocytes emerging first and
oligodendrocyte precursor cells (OPCs) appearing later, alongside
the generation of inhibitory neurons. Importantly, human cortical
organoids also produce essential cell types, including outer radial
glia and callosal projection neurons, populations that are highly
expanded in humans.> This cellular diversity underscores the
unprecedented potential of cortical organoids for studying human
cortical development.

To date, organoids have largely been used to model early stages
of prenatal brain development. Yet, many critical processes, such
as synaptic refinement and circuit maturation, occur well into
postnatal stages. Human brain maturation therefore spans a prolonged
developmental window; for the cortex, this extends over tens of years
postnatally.”? The ability to model these events is essential not

only for establishing human-specific features of cortical function but
also for revealing mechanisms underlying neurodevelopmental and
psychiatric disorders.* Understanding how far and how fast current
cortical organoids can mature, and which developmental processes
they can recapitulate when guided solely by intrinsic programs, is
therefore crucial.

Only a limited number of studies have cultured cortical organoids
beyond six months.?>?32¢3% These studies report molecular markers
of maturation, including time-dependent upregulation of synaptic,
neurotransmitter-related, and ion channel genes,?>*2¢ as well as age-
associated epigenetic signatures,?>?® particularly when organoids
are maintained in activity-permissive media.?”> Evidence of network
maturation has also been described.’! Network activity typically
emerges around 3-6 months?>**2%3° and becomes more robust
over time, % a pattern that has also been described in cerebral
organoids.’>3* Together, these findings demonstrate that cortical
organoids can, through intrinsic programs alone, attain substantial
molecular and functional complexity. However, achieving these
maturation milestones requires long culture periods, which remain a
major practical limitation.

Furthermore, cortical development is shaped by interactions with
extra cortical regions, diverse non-neural cell types, and structured
spontaneous and sensory-driven activity.”’?® Key cell populations,
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such as parvalbumin-expressing (PVALB+) interneurons® and
oligodendrocytes (OLs),* rely heavily on these external cues and,
therefore, show restricted maturation in standard organoid cultures.
This raises the question of whether more advanced maturation could
be achieved by increasing circuit complexity, integrating additional
cell types or brain regions, or introducing patterned activity, features
that cannot arise solely from intrinsic developmental programs.
Accordingly, recent efforts have focused on incorporating these
elements into organoid protocols to accelerate maturation and enhance
the physiological relevance of these models (Figure 2).

Advancing circuit complexity through cross-regional
interactions and external cues

Cortical organoids can achieve remarkable levels of maturation
when cultured for extended periods, yet their progression remains
constrained by slow developmental timelines, as well as the lack
of interaction with other brain areas. To address these challenges,
emerging strategies aim to enhance organoid maturation by
introducing conditions that better recapitulate the interplay between
the developing cortex and other brain structures that provide necessary
cues, cell types, and input into cortical neurons (Figure 2).

Multi-region integration: The brain is not a uniform structure but a
mosaic of distinctive, interconnected areas. Single-region organoids,
by nature, capture only part of that landscape. The use of guided
patterning in cortical organoid protocols boosts reproducibility®*-!!
but limits the regional diversity generated in earlier, unguided cerebral
organoid protocols.®” This reduced interregional complexity constrains
the physiological relevance of single-region organoids, since cortical
circuits rely on the presence of cells generated in distinctly patterned
germinal zones, local connections, and long-range interactions with
other brain areas.’” For example, interneurons generally act within
the cortex, whereas extra-telencephalic projection neurons extend
far beyond it, and many excitatory and inhibitory neurons depend
on inputs from non-cortical sources. Without these partners, the full
complexity of the human cortex cannot be achieved in vitro.

These insights have motivated multi-region organoid strategies that
preserve patterned consistency while restoring richer cross-regional
interactions (Figure 2). One such approach, “connectoids”, promotes
the development of long-range axon tracts between organoids to study
projection architecture and connectivity. ¥4’ These systems display
short-term plasticity, complex network dynamics, and optogenetically-
evoked responses,”’ and they provide a controlled setting to model
disorders involving impaired long-range communication.® Thus,
connectoids offer a versatile platform for exploring the principles of
long-distance neuronal signaling in both health and disease.

In parallel, “assembloids” have gained prominence as a
complementary strategy for restoring interregional interactions. By
fusing single-region organoids patterned separately, assembloids
enable integrated cellular and circuit-level dynamics.'? These models
can form long-range connections and exhibit synchronized activity
across regions. The earliest cortical assembloids brought together
dorsal and ventral forebrain regions, enabling direct observation of
interneuron migration into the developing cortex.*' Soon after, cortico-
thalamic models** expanded the repertoire, opening windows into
axon guidance, disease-related phenotypes, and long-range circuit
assembly.'> More elaborate combinations have since emerged,
including cortico-striatal-midbrain assembloids,” cortico-spinal-
muscle assembloids resembling the motor pathway,”' somatosensory-
spinal-thalamic-cortical assembloids modeling ascending sensory
pathways,? and cortico-striatal-thalamic-cortical systems for the
study of loop circuits.*
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In cortico-striatal assembloids, for example, cortical input
accelerates striatal projection neuron maturation, improving
electrophysiological properties, promoting dendritic spine formation,
and establishing functional excitatory connectivity.”® Dorsoventral
forebrain assembloids, similarly, promote the emergence of
developmentally important interneuron subtypes such as PVALB+
cells*** and exhibit inhibitory synapse formation by migrating
interneurons.* Cortico-thalamic assembloids extend these insights
by showing that thalamic input promotes cortical gene programs
involved in axon growth and activity regulation, expands cortical
progenitors, and increases extra-telencephalic neuron production.
Thalamic signals also induce network dynamics absent in cortical
organoids alone, including thalamus-initiated waves and widespread
synchronous activity.** These models suggest enhanced synaptic
plasticity at both thalamocortical and corticothalamic synapses,
with electron microscopy evidence of reciprocal contacts, as
well as more elaborate neuronal architectures marked by increased
branching, longer projections, and dendritic spines containing
synapses.” They have also proven useful for studying phenotypes in
neurodevelopmental diseases.'>!® Finally, more complex assembloids
further show the capacity of these systems to model physiological
responses. In motor pathway models, cortical stimulation can drive
muscle contraction,” whereas in sensory pathway models, peripheral
sensory input can elicit coordinated activity across the connected
tissues.™

However, even in these more intricate models, the regional
components of assembloids are still generated separately and fused
only after some maturation has occurred. This contrasts with the
embryo, where the neural tube begins as a single structure and acquires
regional identity through continuous exposure to morphogens,
organizer centers, and direct cell—cell interactions.**” These early cues
shape regional identity, boundaries, and connectivity via a process
of self-organization that can only be recreated if cells of different
brain regions co-develop within a single organoid. Notably, in vivo,
early cell—cell interactions establish transient tissue boundaries that
regulate cell migration and connectivity. These boundaries also serve
as progenitor sources for transient cell populations that can only form
when cells from distinct brain regions interact at the right time and
place.> These nuanced interactions are largely missing in organoid
systems in which regions are developed in isolation and only later
fused together.

To better capture these early processes, new approaches aim to
recreate patterning within a unified tissue. Some methods introduce
signaling sources such as morphogen-soaked beads or cell-based
morphogen release centers activated by light or chemicals.® Other
approaches use microfluidic platforms to establish stable gradients
similar to those that guide regionalization in the embryo. Together,
these strategies aim to restore aspects of the shared developmental
environment that current models lack. In this context, the “chimeroid”
approach introduced recently by Antdn-Bolafios et al., > offers a
possible foundation for future work achieving these goals. In this study,
cortical organoids derived from different induced pluripotent stem cell
(iPSC) lines were generated by patterning to the neural progenitor
stage, then dissociated and reassembled into a single mixed organoid.
This principle could be adapted to combine progenitors with different
regional identities. Such adaptations might generate unified tissues in
which early cell interactions support the self-emergence of processes
like migration, neuronal maturation, and circuit formation. Chimeroid
strategies could therefore complement efforts to model early brain
patterning and increase the complexity of organoid systems.
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Collectively, multi-region organoid systems have the potential
to provide unprecedented access to the mechanisms by which brain
regions communicate, mature, and assemble into functional circuits.
These models show that interactions between regions can drive each
other toward greater maturity, potentially yielding more advanced
transcriptional states and richer neuronal morphology. Nevertheless,
much work remains to characterize the cellular composition of each
regional model and to define the specificity of the connections that
different classes of neurons make within assembloids, compared
to their in vivo counterparts. Thus, we are still in the early days of
understanding how faithfully these systems recapitulate the human
brain in terms of functional properties, cell diversity, and cellular
maturation, beyond broad shared features. Although the degree
to which multi-region organoid strategies capture the cellular
complexity, connectivity specificity, and functional properties of in
vivo circuits remains to be clarified, they represent very valuable
tools for understanding the establishment and function of long-range
connectivity.

Xenotransplantation: Another strategy to increase neuronal and
circuit maturation is to engraft organoids into a host brain (Figure 2).
Early studies showed that transplanted neurons could survive, mature,
and functionally integrate within the rodent cortex,*®! hinting that an
in vivo environment might provide crucial maturation cues absent in
vitro. Building on this idea, multiple groups have transplanted both
cerebral®® and cortical organoids***7 into rodent brains. Once
engrafted, these tissues integrated into the surrounding brain and
established reciprocal synaptic connections with host neurons.?*%
Several studies have shown that grafted organoids can also respond
to sensory stimulation.®”’® This enriched in vivo milieu often
promoted deeper maturation of neurons and glia within the grafted
organoids, revealing facets of development that are difficult to achieve
in vitro. For instance, cells from transplanted cortical organoids
show signatures of more advanced molecular and morphological
maturation, including increased expression of genes associated with
synaptic activity, greater dendritic complexity and spine density,®
and enhanced astrocyte ramification.®” A comparable enhancement of
astrocyte complexity was reported in cerebral organoid grafts.*

Electrophysiological indicators of maturity have also been shown
to be enhanced, including coordinated activity, some oscillatory
patterns, and more stable firing properties.®*” Xenotransplantations
have also proven useful for detecting and studying cell migration
defects in neurodevelopmental disorders.®® Despite these advances,
several important aspects of these systems still need to be addressed.
Species-specific interactions may influence how faithfully human
cells integrate into a rodent brain and the degree to which organoid
physiology is shaped by these manipulations requires careful
evaluation. A further key challenge is the lengthy timeline for
functional human maturation, which can take close to eight months
in some cortical organoid grafts.®® Thus, the developmental stage of
transplanted human organoid cells can never be fully aligned with that
of the host brain, limiting their capacity for functional integration.
In addition, transplanted tissue generally persists as a discrete graft
within the host brain rather than achieving widespread integration and
cell-type-specific connectivity within defined endogenous networks.
These limitations may hinder the faithful recapitulation of spontaneous
waves of activity, as well as evoked activity patterns that shape
cortical development in vivo.”® Nonetheless; xenotransplantation
approaches represent an important advance toward promoting higher
levels of maturation and modeling cortical development in the context
of a behaving organism rather than isolated cortical tissue.

Exogenous stimulation: External stimulation is being explored
as a way to enhance cortical organoid maturation, aiming to mimic
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the activity that shapes cortical circuits in vivo (Figure 2). In the
developing brain, spontaneous and sensory-evoked activity from
other regions guides cortical growth, refines wiring, and establishes
the rhythms that support long-term circuit formation.?”?* Cortical
neurons in vitro generate bursts of spontaneous activity that become
increasingly complex,*”” but in vivo the corresponding endogenous
circuits are further shaped by long-range waves of patterned activity
and sensory experience.?’?

As an initial, rudimentary mimic of these additional external
influences, direct stimulation has been used to provide structured cues
that may promote more biologically-relevant maturation. Some studies
have tested whether short-term electrical stimulation can rapidly
modify cerebral organoid circuits.**”>’ Brief pulses of activity elicit
acute synaptic plasticity, including short-term potentiation, showing
that organoids can adjust their activity on fast timescales. These results
provide initial evidence that activity can shape electrophysiological
and synaptic behavior in organoids. While promising, more closely
mimicking in vivo development requires sustained activation.

Longer-term stimulation protocols examine how prolonged
activity influences maturation. In one study,” 45 days of activity-
enhancing drug treatment increased synaptic gene expression and
the number of synaptic puncta, reduced progenitor-state signatures,
and produced more mature electrophysiological properties in cortical
organoids. Electrical stimulation has shown similar benefits. In
cortical organoids, an 8-day stimulation period during progenitor
stages improved neurogenesis, synaptogenesis, and long-lasting
plasticity, with effects that persisted for months, and promoted better
integration after transplantation into the mouse brain.”® Another
recent work”” using daily stimulation over two weeks in cerebral
organoids revealed network-level reorganization, particularly when
multiple organoids were interconnected, indicating that both chronic
stimulation and multi-organoid architecture contribute to circuit
maturation. Altogether, these findings suggest that sustained external
stimulation can push organoids toward more advanced stages of
cortical development.

Yet human cortical development unfolds over months and
even years, suggesting that truly recapitulating this process may
require much longer stimulation and continuous monitoring of
network evolution, a technical challenge that is only beginning to
be tackled.’>”*8! To move toward this goal, emerging approaches
include studies that add ions or neurotransmitters while recording
activity in real time.®? However, such exogenous stimulation can only
approximate the richness and specificity of activity dynamics that
shape cortical development in vivo.

Although external electrical or chemical stimulation can mimic
certain activity patterns, in vivo cortical circuits receive highly
specific inputs from subcortical and sensory regions that shape their
development, first through waves of spontaneous patterned activity
and later through sensory-driven signals.”’? Moreover, the absence
of sensory input is known to hinder cortical maturation in vivo.*
Providing these physiologically-relevant types of input would be an
exciting next step. One potential way to achieve this would be to use
multi-region organoid strategies, combining sensory (e.g., retinal) and
cortical systems and stimulating them through the sensory component
itself. Retino-cortical and retino-thalamo-cortical assemblies have
been generated,*$5 making this an appealing avenue for future
exploration.

In summary, activity-based interventions show that patterned
stimulation can promote more mature molecular, morphological
and functional states in cortical organoids, but current paradigms
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remain rudimentary and are still far from capturing the complex,
temporally- and spatially-structured activity patterns that shape
cortical development in vivo. Nonetheless, they provide crucial proof-
of-principle that activity can be systematically manipulated to guide
organoid development toward more complex circuit states.

Expanding cell diversity and neuromodulatory control

Cortical organoid models are increasingly being refined to
maximize physiological relevance by more closely mimicking the
brain’s environment and multicellular complexity. Multi-region
organoid integration, together with xenotransplantation and activity-
based approaches, represent promising strategies to push cortical
organoids toward more complex cellular and circuit states and to
mitigate some intrinsic limitations of cortical organoids, such as the
lack of interaction with other brain areas and a relatively simplified
functional and molecular environment. However, other important
constraints, including limited representation of extracortical cell types
and the absence of neuromodulator-driven refinement of circuit states,
are not fully addressed by these strategies.
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Beyond neurons, non-neural cell types play essential roles in
shaping cortical circuit development. Astrocytes are a notable
example:'” in vivo, they promote synapse formation, maturation,
and activity-dependent synaptic engulfment. In cortical organoids,
astrocytes spontaneously emerge'*'"® and mature over long-term
culture.#21:98687 - Although evidence that mature astrocytes can
promote cortical circuit development in organoids is limited, one
study shows that astrocyte-derived secretomes can accelerate
neuronal differentiation and enhance network activity.*® By contrast,
other key non-neural populations, such as microglia and endothelial
cells, do not arise in cortical organoids, and others that do, such as
OLs, show limited maturation. Neuromodulatory neurotransmitters
that tune cortical states and circuit refinement are also missing.
These gaps highlight the need to incorporate additional cell types and
neuromodulatory inputs to achieve more physiologically complete
cortical organoids (Figure 2).

Multi-region integration
,/'J.... o
Connectoids Chimeroids (&}
Assembloids . 4
/ ==
£
Circuit
; : Complexity :
Exogenous stimulation Xenotransplantation
Oligodendrocytes Cell Circuit
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Non-neural cell type incorporation

s

Meuromodulators
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Figure 2 Strategies to enhance human cortical organoid maturation. Approaches include (i) modeling the interaction of diverse brain regions with the
developing cortex in multi-region organoids; (ii) mimicking spontaneous and evoked activity during development through exogenous stimulation; (iii) providing
in vivo-like endogenous cues to enhance maturation through transplantation into a host brain; (iv) expanding cell diversity by incorporating microglia and

vasculature and promoting oligodendrocyte maturation; and, (v) controlling circuit state and tuning via added neuromodulation.
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Oligodendrocytes: OLs regulate cortical developmental timing,
plasticity, and circuit function throughout life.** Beyond their well-
characterized role in myelination, they act as active circuit-specific
regulators by phagocytosing axons and synapses, integrating synaptic
inputs, and releasing extracellular matrix-related factors.®* Their
dense innervation by cortical inhibitory neurons, which is especially
pronounced during specific developmental windows, has linked them
to key roles in activity-dependent circuit plasticity and refinement,
particularly during critical periods.””> They also contribute to
synchrony across cortical regions,’ and their dysfunction is associated
with several pathological conditions, including neurodevelopmental
disorders.”!

During development, cortical OLs arise later than astrocytes,
originating from OPCs that first appear in two early migrating ventral
waves, followed by a third wave generated locally.” Accordingly,
OPCsand OLs also emerge in both unpatterned and cortically-patterned
organoids, but only after prolonged maturation and with limited
progression, resulting in absent or very sparse and immature myelin
formation.”!*13¢97 Given this delayed and limited oligodendrogenesis,
multiple approaches have been tested to accelerate OL appearance
and maturation (reviewed in Huang et al.,* and extensively in Zeldich
and Rajkumar®®). In brief, adding OPC-promoting factors to dorsal
forebrain organoids enriches late-wave OLs,” while ventral forebrain
organoids supplemented with glia-promoting media produce early-
wave OLs and can generate myelin by five months.!” Fusing treated
dorsal and ventral forebrain organoids enables OPC migration and
produces more mature OL features within six weeks compared with
single-region organoids.'”! However, myelination in these models
remains limited, with few myelinated axons, poor compaction, and no
nodes of Ranvier.”-1"! In contrast, these features do appear in midbrain
organoids,!®® where myelination occurs earlier than in the cortex in
vivo, suggesting that cortical models with more advanced myelination
may also be possible. More recent strategies, including trophic factors,
pro-OPC geneover expression, and transplantation into the mouse
brain, can produce earlier myelin (as soon as 12 weeks)!%-1% and even
nodes of Ranvier.!”® However, the effects of these developments on
neurogenesis, cellular diversity, and astrogenesis remain untested.

Direct evidence that inclusion of mature OLs can enhance network
dynamics in cortical organoids is currently absent. One recent study?’
detected network activity but did not assess whether the presence of
OLs directly contributed to it. Overall, these strategies to increase
myelination and OL maturation are encouraging, but further work is
needed to clarify their potential impact on cortical circuit maturation
in organoids.

Microglia: Microglia sculpts neuronal circuits by assisting with the
elimination of weak synapses and releasing cytokines and growth
factors that regulate neuronal excitability and plasticity.'”” They play
a key role in refining cortical circuits, not only by shaping excitatory
networks but also by regulating the development and output of
cortical interneurons early in life.'®!"" Microglia also helps maintain
neural circuitry during development by modifying the perisynaptic
matrix, the diffuse extracellular material surrounding dendritic and
axonal terminals."? Furthermore, alterations in microglial number
or function have been linked to neurodevelopmental disorders.!*!*
Notably, microglia share a highly-conserved developmental
origin across vertebrates: they largely arise from yolksac-derived
mesodermal progenitors early in embryogenesis, enter the brain
through the nascent vasculature, and gradually spread across the
forming cortex.'” In contrast, regionalized cortical organoids are
patterned toward neuroectoderm and, thus, lack the mesodermal
signals required to generate microglia, prompting the development of
approaches to incorporate them into these models.
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There are three main strategies to generate microglia-containing
brain organoids:"'® (i) co-culture, in which independently-derived
microglia are combined with mature neural organoids at defined ratios;
(i1) addition of microglia or microglial progenitors into pre-generated
organoids; and (iii) spontaneous generation, which allows mesodermal
lineages to emerge and produce endogenous microglia. Across these
approaches, microglia have been shown to accelerate intrinsic and
network-level maturation in cerebral organoids,'”""” midbrain
organoids,'?’ and cortical organoids, where microglia were generated
through overexpression of a myeloid-specific factors.’?! Microglia
has also been observed to support synaptic pruning in cerebral
organoids'”!'?? and in co-cultures with tripartite cortico-striatal-
midbrain assembloids.'?® Interestingly, pathological overpruning and
synaptic loss have been reported in cortical organoids containing
microglia carrying genetic risk mutations associated with autism
spectrum disorder.'”*!>* Microglia may also play neuroprotective
roles in organoids, as suggested by observations in long-term cerebral
organoids containing integrated iPSC-derived microglia.'” Although
these findings are promising, further work will be needed to clearly
elucidate how microglia contribute to the maturation and increased
structural and functional complexity of cortical organoids.

Vasculature: Vascularization of the cortex occurs early in
embryonic development, with cells from the vasculature originating
extracortically and migrating into the developing tissue.” This process
is tightly regulated by reciprocal communication between vascular
and neural lineages. In the cortex, endothelial cells (the cells that line
the interior surface of blood vessels) have been shown to influence
circuit formation by regulating excitatory and inhibitory neuronal
migration, synaptogenesis, and synaptic strength.!?¢'? Disruption of
these endothelial-neural interactions can alter migration patterns and
may contribute to neurodevelopmental disorders.'3

A major driving purpose behind vascularizing cerebral and cortical
organoids has been to enhance their long-term survival and enable
the modeling of neurovascular development, including the formation
of the neurovascular unit (NVU), angiogenesis, and blood-brain
barrier features. Therefore, multiple strategies have been developed
for vascular development in organoids, including co-culture methods,
factor-based differentiation, genetic engineering, in vivo engraftment,
and microfluidic platforms. Across these methods, researchers
consistently report the formation of mature and functional vascular
structures and in some cases even NV Us."!

Beyond these motivations, accumulating evidence suggests
that vascularization can improve neuronal circuit quality within
cortical organoids, although this area of study is very limited.
Adding endothelial cells through various strategies appears to
enhance molecular signatures of neuronal maturation, although often
without electrophysiological validation.'”> '3 Complementary work
using mouse endothelial-neuron co-culture models has shown pro-
maturation effects, including enhanced neurite outgrowth, increased
dendritic spine density, a higher number of excitatory synapses,
and more advanced electrophysiological properties.””” Notably,
one study using human umbilical vein endothelial cells showed
increased neuronal maturation, improved synaptic development,
and more organized excitatory—inhibitory network activity in
cortical organoids.?* Together, these findings highlight that vascular
components can actively contribute to the establishment of more
mature and functionally organized cortical circuits. Future studies
incorporating these cells into cortical organoids will be important to
determine how they further improve cortical circuit development and
function.
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Neuromodulators: Five major neuromodulatory systems regulate
cortical circuits: acetylcholine, histamine, dopamine, norepinephrine,
and serotonin. They arise from subcortical nuclei in the basal
forebrain, hypothalamus, midbrain, and hindbrain, which send long-
range projections that broadly innervate the cortex."*® Although
traditionally considered slow and spatially-diffuse signals that act
mainly through volume transmission, growing evidence shows that
these neuromodulators can also exert rapid and spatially-precise
effects.”*®13?  Across systems, neuromodulators shape cortical
physiology by regulating neuronal excitability, synaptic plasticity, and
large-scale network states, including thalamocortical pathways. 414!
They are essential for higher cognitive functions such as learning and
memory'***! and have been implicated in cortical development and in
vulnerability windows linked to neurodevelopmental and psychiatric
disorders.'*>* Despite their importance, their precise roles within
cortical circuits remain understudied.

This knowledge gap is even greater in cortical organoids, where
neuromodulatory signaling is largely absent. Although transcriptomic
analyses indicate that many neuromodulatory neurotransmitters are
present in cerebral organoids,*” and region-specific models have
been generated, including serotonergic hindbrain organoids,'* locus
coeruleus-like norepinephrine neurons,'* and dopaminergic midbrain
organoids,'¥’ few studies have integrated these populations with
cortical organoids or assessed their influence on cortical network
maturation.

A notable exception is a cortico-striatal-midbrain assembloid
showing dopamine-dependent cortical activity,’® though its effects
on network maturation remain untested. Focusing on glia, another
promising study® showed that astrocytes from cerebral organoids
engrafted into the mouse cortex enhanced their calcium responses
and morphological complexity through modulation by cholinergic
and dopaminergic inputs. Given the essential role of neuromodulators
in tuning cortical circuits, introducing neuromodulatory systems
into cortical organoids may be particularly valuable. This could be
done by applying exogenous neuromodulatory signals or, more
physiologically, by adding subcortical regions to reconstitute long-
range neuromodulatory pathways. Such approaches could provide
a powerful platform to uncover human-specific mechanisms of
cortical maturation and refinement and to clarify how their disruption
contributes to disease.

Multi-lineage approaches:In the last few years, new strategies have
begun to incorporate multiple non-neuronal cell types into cortical
organoids, an important advance given the essential bidirectional
crosstalk among microglia, OLs, and other non-neuronal lineages that
supports cortical circuit maturation.”’** A recent model integrating
both microglia and OLs into cerebral organoids'* highlighted some
microglia-mediated remyelination after injury, underscoring the
importance of introducing multiple non-neuronal cell types to increase
biological realism. Although such dual integration is promising, its
direct impact on circuit-level enhancement within organoid systems
remains unexplored.

Building on this concept, strategies combining vascular and
microglial elements yield further biologically relevant outcomes:
vascular—cerebral assembloids show that microglia remain
immunocompetent within a vascularized microenvironment,'** and
an iPSC-derived hematopoietic/endothelial co-induction strategy
promotes early astro cytogenesis, supports functional microglia, and
achieves perfusion following in vivo transplantation.'* Extending
these multisystem approaches, a three-dimensional human co-culture
incorporating iPSC-derived microglia, OLs, and vascular cells together

Copyright:
©2026 Montero-Crespo et al. 0

with neurons and astrocytes reported enhanced neuronal synaptic
protein expression, increased calcium transient frequency, elevated
spike and burst rates, and reduced response latency to electrical
stimulation relative to neuron-only monocultures. Consistently,
transcriptomic signatures show heightened neuronal and synaptic
maturation compared to neuron-astrocyte co-cultures, supporting the
idea that diverse non-neuronal lineages may collaborate to promote
cortical circuit maturation.'*

Overall, the field has successfully incorporated non-neural cells
into cortical and other organoids, with flexible strategies to either
promote their endogenous development or add them exogenously.
Across several studies, such multisystem models show more advanced
maturation than neuron-only cultures. Yet in vivo, diverse cell classes
interact in tightly-regulated spatial and temporal patterns, and species-
specific differences in cell-type proportions critically shape brain
properties, implying that these proportions may need to be controlled to
achieve normal network function. Key open questions concern which
developmental stages, timings, combinations, and relative ratios of
cell types provide the greatest benefit, and whether these cells interact
during appropriate developmental windows to shape circuit-level
behavior. Together, converging evidence suggests that multisystem
cortical organoids are a promising route to more physiologically-
complete reconstructions of human cortical maturation, particularly
as they begin to be applied to disease modeling.

Future directions: challenges, applications
and opportunities

As cortical organoids develop more mature and diverse circuits,
they are opening new avenues for exploring human cortical
development and function. These advances enable a new range of
biological questions to be addressed directly in a human context,
expanding the frontiers of developmental neuroscience.

The increasing complexity of next-generation organoids
will likely enable the investigation of human-specific aspects of
cortical microcircuit development, moving the field beyond earlier
developmental events, such as fate specification, cell diversification,
and migration. Although human and mouse cortex differ in specific
cell-type identities, such as expanded interneuron and glial diversity,
these distinctions do not fully explain the major evolutionary changes
of the human cortex. More fundamental shifts in cell properties
are thought to be key, including the expansion of outer radial glia
that drives cortical enlargement, increases in callosal projection
neurons, altered interneuron proportions, and the larger, more
complex morphology of human pyramidal neurons.>!" Building on
this cellular foundation, major species differences also appear at
the microcircuit level. While humans and rodents share the same
basic cortical plan, human cortical microcircuits are sparser, more
interneuron-centered, and more influenced by non-neuronal cells.
Humans have fewer synapses overall, but these synapses (especially
in upper layers and pyramidal-to-interneuron pathways) are stronger
and more reliable.””"'3 Interneuron networks are expanded, with
more inhibitory-to-inhibitory connections,'™ and primates show
pronounced upper-layer expansion and cortico-cortical projection
dominance.'">!> Additional human-specific shifts include changes
in neuromodulatory receptor expression’**!>” and more structured
neuron—glial organization.'”>!5® These differences likely contribute to
the distinctive features of human brain function and cognition. Still,
the scope of these human-specific microcircuit specializations, their
origins, and their impacts on cortical development and disease risk
remain unresolved, questions that advanced cortical organoids could
help address.
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Beyond these microcircuit-level differences, the developmental
tempo of human cortical networks is markedly prolonged, extending
well into postnatal life and involving major shifts in circuit architecture,
synaptic refinement, and myelination.*'*-1! Consequently, humans
maintain extended and gradually closing windows of plasticity,
allowing experience to influence circuit formation for much longer than
in other species.!*16%192163 Disruptions to this timing are often linked to
neurodevelopmental disorders.!** Next-generation organoids offer an
experimentally accessible model for probing these slowly unfolding
processes, perhaps highlighting how genetic or environmental
factors shape the timing and flexibility of network formation and
the mechanisms guiding human-specific cortical circuit maturation.
Extending this framework, strategies linking cortical organoids to
sensory structures or device-based interfaces could further clarify
how experience molds developing circuits. Such systems would allow
direct study of sensory processing, environmental responsiveness,
and disorders affecting these pathways, providing a complementary
platform for investigating experience-dependent refinement and
critical period regulation.

Enhanced cortical organoids will also open the door to
revealing mechanisms of neurodevelopmental disorders. Many
of these conditions involve disruptions in synaptic function and
circuit organization, to the point that they have been described as
synaptopathies,165 or, more recently, as connectopathies.166 As
organoids begin to capture more human-specific cellular and regional
interactions and circuit motifs, they will enable deeper investigation
of how genetic variants or environmental insults alter network-
level function. These advances may also support more predictive
therapeutic screening by allowing candidate compounds to be
tested on human-like circuits that better reflect developing cortical
dynamics. Emerging findings highlight this translational potential: a
recent study66 showed that an antisense oligonucleotide therapy can
rescue core cellular and circuit defects in Timothy syndrome across
dorsoventral forebrain assembloids and transplantation models, and
efforts are now underway to translate this approach clinically.

Together, these advances position next-generation cortical
organoids as powerful platforms for uncovering the cellular and
circuit-level principles that shape human cortical development and
disease. However, as these models become increasingly complex and
versatile, they raise some ethical considerations. As noted in recent
articles,'”!® the rapid advancement of neural organoid research is
calling for discussions about higher order functions, the ethics of
implanting organoids into other species, and the broader limits of the
field.!®-17° Together, these challenges underscore the need for careful
oversight and a clear ethical framework for this area of research at
large.

By capturing increasingly human-like features of cortical
organization, cortical organoids provide a framework for investigating
the origins of unique human traits, clarifying mechanisms that
underlie neurodevelopmental vulnerability, and guiding more precise
strategies for intervention.'”*!”> Organoids may never reproduce
every nuance of the living human brain, but even without this, they
hold promise to deliver powerful insights into human brain biology,
development, and disease. With rapid methodological advances and
growing efforts toward standardization, these models are becoming
robust and flexible enough to drive new discoveries, opening avenues
previously inaccessible in human neuroscience.
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