

Next-generation cortical organoid models: from self-organization to integrated systems

Abstract

Understanding human brain development remains challenging because animal models do not recapitulate many human-specific features, and access to developing human tissue is rare. Over the past decade, stem cell-derived 3D brain organoids have transformed this landscape by enabling controlled modeling of fate specification, cell diversification, migration, and emerging connectivity. Advances in patterning and culture now yield region-specific cortical organoids that recapitulate key human cortical cell types, trajectories, and disease-relevant phenotypes. Yet current models still struggle to capture the cortex's intricate architecture, long-range interactions, and extended maturation. In this review, we highlight emerging strategies to enhance cortical organoid complexity and the physiological relevance of their neural circuits.

Keywords: human brain development, cortical organoids, 3D brain organoids, stem cell

Volume 11 Issue 1 - 2026

Marta Montero-Crespo,^{1,2,3} Milagros Pereira Luppi,^{1,2,3} Paola Arlotta^{1,2}

¹Department of Stem Cell & Regenerative Biology, Harvard University, USA

²Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, USA

³These authors contributed equally

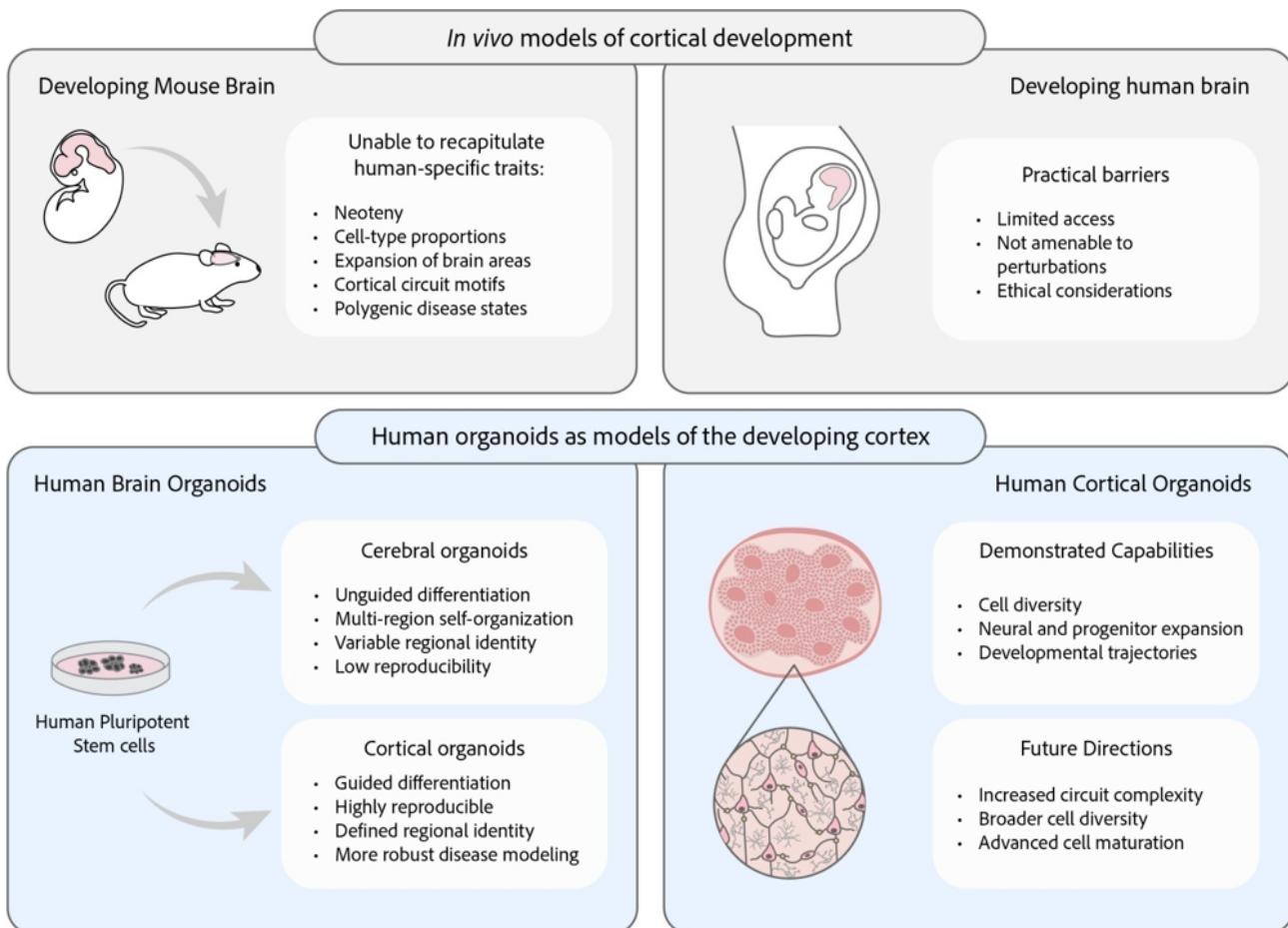
Correspondence: Paola Arlotta, Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA

Received: December 24, 2025 | **Published:** January 21, 2026

Organoids as experimental models of the developing brain

Understanding human brain development is hampered by a paucity of experimental models capable of recapitulating its complexity and species-specific features. While traditional animal models are extremely useful to study brain characteristics shared across species, they cannot model human-specific traits such as extended neotenic periods, cell type-specific expansions, and human-specific cell proportions, in addition to the evolutionary expansion of brain areas and distinct functional properties of human circuits.^{1,2} Moreover, animals cannot feasibly model complex human genetics, including polygenic disease states or the contribution of human genetic background. Experimental access to the human developing brain is limited, as most of its cell types and patterns of connections emerge during embryonic development and early postnatal life, and rare samples of *ex vivo* developing brain tissue are not amenable to expansion *in vitro* (Figure 1).

Over the past decade, stem cell-derived brain models, such as 3D brain organoids (also referred to as cerebral or neural organoids),³ have become invaluable tools to explore and perturb human brain development. Organoid systems have undergone dramatic refinement and growth in complexity, fidelity, and reproducibility, emerging as powerful experimental models. These advances have been driven by organoid protocols that rely either on intrinsic self-organization or on external progenitor patterning (see reviews by Birtele et al.,⁴ and Mayhew and Singhania,⁵ for description of various organoid models). These approaches enable the generation of both unpatterned cerebral organoids, which arise through unguided differentiation and lack a defined regional identity,^{6,7} and patterned, region-specific organoids, such as human cortical organoids (Figure 1).⁸⁻¹¹ The development of standardized differentiation and culture approaches has broadly increased reproducibility in organoid systems. Human organoids have been used to model key events of human brain development, including fate specification, cell diversification, and migration,^{4,12-16} and are emerging as valuable models to study circuit organization, including long-distance connectivity.¹²


In this review, we focus on cortical organoid models, as the cerebral cortex represents a hallmark of human evolutionary expansion²

and is prominently affected in neurodevelopmental disorders.¹⁷⁻¹⁹ Cortical organoids can reliably recapitulate key features of human cortical development, including cellular composition, diversity, and developmental trajectories, with appropriate progenitor, neuronal, and glial populations emerging at defined stages.^{4,5,20} These increasingly robust models are well-suited to capture disease-relevant characteristics and dissect human-specific mechanisms of cortical pathogenesis,^{4,21} as their predictable developmental trajectories provide greater power to identify phenotypes linked to disorder-associated mutations and patient-specific genetic backgrounds (Figure 1).

However, even with these advantages, cortical organoids still encounter major obstacles when it comes to capturing the intricate circuitry of the human cortex. Much of this challenge arises from the difficulty of coordinating region-specific development, achieving formation of particular structural features (i.e., cortical layers), and sustaining growth over the long timescales required for the necessary degree of cell and circuit maturation.

The maturation of the cells and circuits of the brain involves multiple processes that can be defined across many axes. Organoid studies to date have generally assessed maturation through four broad categories: (i) cellular diversity, such as presence of distinct neural subtypes and glial classes, (ii) molecular maturation, as evidenced by transcriptional and epigenetic states associated with differentiated cell populations, (iii) cellular maturation, including the presence and density of dendritic spines and synapses, the complexity of dendritic and glial arborization, and myelin formation, and (iv) functional maturation, as assessed by electrophysiological properties such as network coordination and oscillatory dynamics. However, most studies address only a subset of these criteria, depending on the work's goals and guiding research questions. A comprehensive comparison assessing each of these features across the breadth of existing models has yet to be accomplished.

As researchers push forward, the next frontier lies in coaxing these miniature tissues toward more authentic circuit formation and specialization. Emerging efforts to enhance connectivity, improve cellular heterogeneity and maturation, and broaden regional diversity will help to advance this goal. Perhaps this is the start of a new chapter in organoid research, one that brings us closer to *in vitro* models that more faithfully mirror the brain's remarkable complexity.

Figure 1 Human brain organoids as experimental models of cortical development. In vivo models are limited by species differences, restricted access to human tissue, and ethical and practical constraints. Human pluripotent stem cell–derived cortical organoids overcome some of these issues by offering reproducible, region-specific models that capture important features of human corticogenesis.

Toward greater complexity in cortical organoids

Intrinsic generation of cellular diversity and network complexity in cortical organoids

Cortical organoids have demonstrated a remarkable capacity to mature during long-term culture, recapitulating transcriptional trajectories that mirror the temporally coordinated stages of fetal brain development.^{10,14,22–26} They undergo sequential neurogenesis, synaptogenesis, and gliogenesis, with astrocytes emerging first and oligodendrocyte precursor cells (OPCs) appearing later, alongside the generation of inhibitory neurons. Importantly, human cortical organoids also produce essential cell types, including outer radial glia and callosal projection neurons, populations that are highly expanded in humans.² This cellular diversity underscores the unprecedented potential of cortical organoids for studying human cortical development.

To date, organoids have largely been used to model early stages of prenatal brain development. Yet, many critical processes, such as synaptic refinement and circuit maturation, occur well into postnatal stages. Human brain maturation therefore spans a prolonged developmental window; for the cortex, this extends over tens of years postnatally.^{27–29} The ability to model these events is essential not

only for establishing human-specific features of cortical function but also for revealing mechanisms underlying neurodevelopmental and psychiatric disorders.⁴ Understanding how far and how fast current cortical organoids can mature, and which developmental processes they can recapitulate when guided solely by intrinsic programs, is therefore crucial.

Only a limited number of studies have cultured cortical organoids beyond six months.^{22,23,26,30} These studies report molecular markers of maturation, including time-dependent upregulation of synaptic, neurotransmitter-related, and ion channel genes,^{22,23,26} as well as age-associated epigenetic signatures,^{22,26} particularly when organoids are maintained in activity-permissive media.²² Evidence of network maturation has also been described.³¹ Network activity typically emerges around 3–6 months^{22,24,26,30} and becomes more robust over time,^{26,30} a pattern that has also been described in cerebral organoids.^{32–34} Together, these findings demonstrate that cortical organoids can, through intrinsic programs alone, attain substantial molecular and functional complexity. However, achieving these maturation milestones requires long culture periods, which remain a major practical limitation.

Furthermore, cortical development is shaped by interactions with extra cortical regions, diverse non-neuronal cell types, and structured spontaneous and sensory-driven activity.^{27,28} Key cell populations,

such as parvalbumin-expressing (PVALB⁺) interneurons³⁵ and oligodendrocytes (OLs),³⁶ rely heavily on these external cues and, therefore, show restricted maturation in standard organoid cultures. This raises the question of whether more advanced maturation could be achieved by increasing circuit complexity, integrating additional cell types or brain regions, or introducing patterned activity, features that cannot arise solely from intrinsic developmental programs. Accordingly, recent efforts have focused on incorporating these elements into organoid protocols to accelerate maturation and enhance the physiological relevance of these models (Figure 2).

Advancing circuit complexity through cross-regional interactions and external cues

Cortical organoids can achieve remarkable levels of maturation when cultured for extended periods, yet their progression remains constrained by slow developmental timelines, as well as the lack of interaction with other brain areas. To address these challenges, emerging strategies aim to enhance organoid maturation by introducing conditions that better recapitulate the interplay between the developing cortex and other brain structures that provide necessary cues, cell types, and input into cortical neurons (Figure 2).

Multi-region integration: The brain is not a uniform structure but a mosaic of distinctive, interconnected areas. Single-region organoids, by nature, capture only part of that landscape. The use of guided patterning in cortical organoid protocols boosts reproducibility^{3,9,11} but limits the regional diversity generated in earlier, unguided cerebral organoid protocols.^{6,7} This reduced interregional complexity constrains the physiological relevance of single-region organoids, since cortical circuits rely on the presence of cells generated in distinctly patterned germinal zones, local connections, and long-range interactions with other brain areas.³⁷ For example, interneurons generally act within the cortex, whereas extra-telencephalic projection neurons extend far beyond it, and many excitatory and inhibitory neurons depend on inputs from non-cortical sources. Without these partners, the full complexity of the human cortex cannot be achieved *in vitro*.

These insights have motivated multi-region organoid strategies that preserve patterned consistency while restoring richer cross-regional interactions (Figure 2). One such approach, “connectoids”, promotes the development of long-range axon tracts between organoids to study projection architecture and connectivity.^{38–40} These systems display short-term plasticity, complex network dynamics, and optogenetically-evoked responses,⁴⁰ and they provide a controlled setting to model disorders involving impaired long-range communication.³⁹ Thus, connectoids offer a versatile platform for exploring the principles of long-distance neuronal signaling in both health and disease.

In parallel, “assembloids” have gained prominence as a complementary strategy for restoring interregional interactions. By fusing single-region organoids patterned separately, assembloids enable integrated cellular and circuit-level dynamics.¹² These models can form long-range connections and exhibit synchronized activity across regions. The earliest cortical assembloids brought together dorsal and ventral forebrain regions, enabling direct observation of interneuron migration into the developing cortex.⁴¹ Soon after, cortico-thalamic models^{42–49} expanded the repertoire, opening windows into axon guidance, disease-related phenotypes, and long-range circuit assembly.¹² More elaborate combinations have since emerged, including cortico-striatal-midbrain assembloids,⁵⁰ cortico-spinal-muscle assembloids resembling the motor pathway,⁵¹ somatosensory-spinal-thalamic-cortical assembloids modeling ascending sensory pathways,⁵² and cortico-striatal-thalamic-cortical systems for the study of loop circuits.⁵³

In cortico-striatal assembloids, for example, cortical input accelerates striatal projection neuron maturation, improving electrophysiological properties, promoting dendritic spine formation, and establishing functional excitatory connectivity.⁵³ Dorsorostral forebrain assembloids, similarly, promote the emergence of developmentally important interneuron subtypes such as PVALB⁺ cells^{54,55} and exhibit inhibitory synapse formation by migrating interneurons.⁴ Cortico-thalamic assembloids extend these insights by showing that thalamic input promotes cortical gene programs involved in axon growth and activity regulation, expands cortical progenitors, and increases extra-telencephalic neuron production. Thalamic signals also induce network dynamics absent in cortical organoids alone, including thalamus-initiated waves and widespread synchronous activity.⁴⁵ These models suggest enhanced synaptic plasticity at both thalamocortical and corticothalamic synapses, with electron microscopy evidence of reciprocal contacts,⁴⁷ as well as more elaborate neuronal architectures marked by increased branching, longer projections, and dendritic spines containing synapses.⁴³ They have also proven useful for studying phenotypes in neurodevelopmental diseases.^{12,16} Finally, more complex assembloids further show the capacity of these systems to model physiological responses. In motor pathway models, cortical stimulation can drive muscle contraction,⁵¹ whereas in sensory pathway models, peripheral sensory input can elicit coordinated activity across the connected tissues.⁵²

However, even in these more intricate models, the regional components of assembloids are still generated separately and fused only after some maturation has occurred. This contrasts with the embryo, where the neural tube begins as a single structure and acquires regional identity through continuous exposure to morphogens, organizer centers, and direct cell–cell interactions.^{56,57} These early cues shape regional identity, boundaries, and connectivity via a process of self-organization that can only be recreated if cells of different brain regions co-develop within a single organoid. Notably, *in vivo*, early cell–cell interactions establish transient tissue boundaries that regulate cell migration and connectivity. These boundaries also serve as progenitor sources for transient cell populations that can only form when cells from distinct brain regions interact at the right time and place.⁵⁶ These nuanced interactions are largely missing in organoid systems in which regions are developed in isolation and only later fused together.

To better capture these early processes, new approaches aim to recreate patterning within a unified tissue. Some methods introduce signaling sources such as morphogen-soaked beads or cell-based morphogen release centers activated by light or chemicals.⁵⁸ Other approaches use microfluidic platforms to establish stable gradients similar to those that guide regionalization in the embryo. Together, these strategies aim to restore aspects of the shared developmental environment that current models lack. In this context, the “chimeroid” approach introduced recently by Antón-Bolaños et al.,⁵⁹ offers a possible foundation for future work achieving these goals. In this study, cortical organoids derived from different induced pluripotent stem cell (iPSC) lines were generated by patterning to the neural progenitor stage, then dissociated and reassembled into a single mixed organoid. This principle could be adapted to combine progenitors with different regional identities. Such adaptations might generate unified tissues in which early cell interactions support the self-emergence of processes like migration, neuronal maturation, and circuit formation. Chimeroid strategies could therefore complement efforts to model early brain patterning and increase the complexity of organoid systems.

Collectively, multi-region organoid systems have the potential to provide unprecedented access to the mechanisms by which brain regions communicate, mature, and assemble into functional circuits. These models show that interactions between regions can drive each other toward greater maturity, potentially yielding more advanced transcriptional states and richer neuronal morphology. Nevertheless, much work remains to characterize the cellular composition of each regional model and to define the specificity of the connections that different classes of neurons make within assembloids, compared to their *in vivo* counterparts. Thus, we are still in the early days of understanding how faithfully these systems recapitulate the human brain in terms of functional properties, cell diversity, and cellular maturation, beyond broad shared features. Although the degree to which multi-region organoid strategies capture the cellular complexity, connectivity specificity, and functional properties of *in vivo* circuits remains to be clarified, they represent very valuable tools for understanding the establishment and function of long-range connectivity.

Xenotransplantation: Another strategy to increase neuronal and circuit maturation is to engraft organoids into a host brain (Figure 2). Early studies showed that transplanted neurons could survive, mature, and functionally integrate within the rodent cortex,^{60,61} hinting that an *in vivo* environment might provide crucial maturation cues absent *in vitro*. Building on this idea, multiple groups have transplanted both cerebral⁶²⁻⁶⁵ and cortical organoids^{24,66-70} into rodent brains. Once engrafted, these tissues integrated into the surrounding brain and established reciprocal synaptic connections with host neurons.^{24,64} Several studies have shown that grafted organoids can also respond to sensory stimulation.⁶⁷⁻⁷⁰ This enriched *in vivo* milieu often promoted deeper maturation of neurons and glia within the grafted organoids, revealing facets of development that are difficult to achieve *in vitro*. For instance, cells from transplanted cortical organoids show signatures of more advanced molecular and morphological maturation, including increased expression of genes associated with synaptic activity, greater dendritic complexity and spine density,⁶⁸ and enhanced astrocyte ramification.⁶⁹ A comparable enhancement of astrocyte complexity was reported in cerebral organoid grafts.⁶⁵

Electrophysiological indicators of maturity have also been shown to be enhanced, including coordinated activity, some oscillatory patterns, and more stable firing properties.^{68,70} Xenotransplantations have also proven useful for detecting and studying cell migration defects in neurodevelopmental disorders.⁶⁶ Despite these advances, several important aspects of these systems still need to be addressed. Species-specific interactions may influence how faithfully human cells integrate into a rodent brain and the degree to which organoid physiology is shaped by these manipulations requires careful evaluation. A further key challenge is the lengthy timeline for functional human maturation, which can take close to eight months in some cortical organoid grafts.⁶⁸ Thus, the developmental stage of transplanted human organoid cells can never be fully aligned with that of the host brain, limiting their capacity for functional integration. In addition, transplanted tissue generally persists as a discrete graft within the host brain rather than achieving widespread integration and cell-type-specific connectivity within defined endogenous networks. These limitations may hinder the faithful recapitulation of spontaneous waves of activity, as well as evoked activity patterns that shape cortical development *in vivo*.²⁷⁻²⁹ Nonetheless; xenotransplantation approaches represent an important advance toward promoting higher levels of maturation and modeling cortical development in the context of a behaving organism rather than isolated cortical tissue.

Exogenous stimulation: External stimulation is being explored as a way to enhance cortical organoid maturation, aiming to mimic

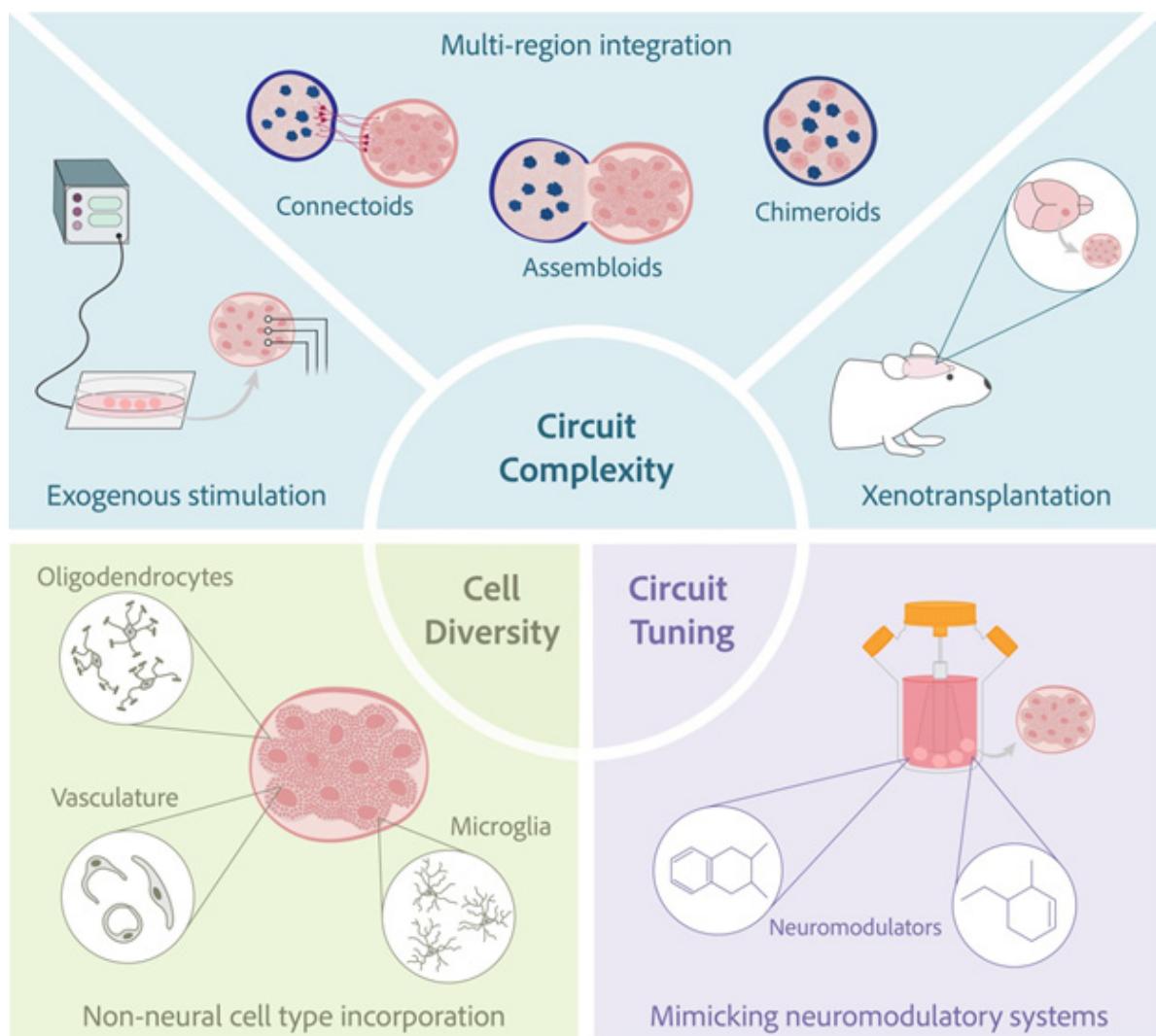
the activity that shapes cortical circuits *in vivo* (Figure 2). In the developing brain, spontaneous and sensory-evoked activity from other regions guides cortical growth, refines wiring, and establishes the rhythms that support long-term circuit formation.²⁷⁻²⁹ Cortical neurons *in vitro* generate bursts of spontaneous activity that become increasingly complex,^{34,71,72} but *in vivo* the corresponding endogenous circuits are further shaped by long-range waves of patterned activity and sensory experience.²⁷⁻²⁹

As an initial, rudimentary mimic of these additional external influences, direct stimulation has been used to provide structured cues that may promote more biologically-relevant maturation. Some studies have tested whether short-term electrical stimulation can rapidly modify cerebral organoid circuits.^{40,73,74} Brief pulses of activity elicit acute synaptic plasticity, including short-term potentiation, showing that organoids can adjust their activity on fast timescales. These results provide initial evidence that activity can shape electrophysiological and synaptic behavior in organoids. While promising, more closely mimicking *in vivo* development requires sustained activation.

Longer-term stimulation protocols examine how prolonged activity influences maturation. In one study,⁷⁵ 45 days of activity-enhancing drug treatment increased synaptic gene expression and the number of synaptic puncta, reduced progenitor-state signatures, and produced more mature electrophysiological properties in cortical organoids. Electrical stimulation has shown similar benefits. In cortical organoids, an 8-day stimulation period during progenitor stages improved neurogenesis, synaptogenesis, and long-lasting plasticity, with effects that persisted for months, and promoted better integration after transplantation into the mouse brain.⁷⁶ Another recent work⁷⁷ using daily stimulation over two weeks in cerebral organoids revealed network-level reorganization, particularly when multiple organoids were interconnected, indicating that both chronic stimulation and multi-organoid architecture contribute to circuit maturation. Altogether, these findings suggest that sustained external stimulation can push organoids toward more advanced stages of cortical development.

Yet human cortical development unfolds over months and even years, suggesting that truly recapitulating this process may require much longer stimulation and continuous monitoring of network evolution, a technical challenge that is only beginning to be tackled.^{52,78-81} To move toward this goal, emerging approaches include studies that add ions or neurotransmitters while recording activity in real time.⁸² However, such exogenous stimulation can only approximate the richness and specificity of activity dynamics that shape cortical development *in vivo*.

Although external electrical or chemical stimulation can mimic certain activity patterns, *in vivo* cortical circuits receive highly specific inputs from subcortical and sensory regions that shape their development, first through waves of spontaneous patterned activity and later through sensory-driven signals.²⁷⁻²⁹ Moreover, the absence of sensory input is known to hinder cortical maturation *in vivo*.⁸³ Providing these physiologically-relevant types of input would be an exciting next step. One potential way to achieve this would be to use multi-region organoid strategies, combining sensory (e.g., retinal) and cortical systems and stimulating them through the sensory component itself. Retino-cortical and retino-thalamo-cortical assemblies have been generated,^{84,85} making this an appealing avenue for future exploration.


In summary, activity-based interventions show that patterned stimulation can promote more mature molecular, morphological and functional states in cortical organoids, but current paradigms

remain rudimentary and are still far from capturing the complex, temporally- and spatially-structured activity patterns that shape cortical development *in vivo*. Nonetheless, they provide crucial proof-of-principle that activity can be systematically manipulated to guide organoid development toward more complex circuit states.

Expanding cell diversity and neuromodulatory control

Cortical organoid models are increasingly being refined to maximize physiological relevance by more closely mimicking the brain's environment and multicellular complexity. Multi-region organoid integration, together with xenotransplantation and activity-based approaches, represent promising strategies to push cortical organoids toward more complex cellular and circuit states and to mitigate some intrinsic limitations of cortical organoids, such as the lack of interaction with other brain areas and a relatively simplified functional and molecular environment. However, other important constraints, including limited representation of extracortical cell types and the absence of neuromodulator-driven refinement of circuit states, are not fully addressed by these strategies.

Beyond neurons, non-neuronal cell types play essential roles in shaping cortical circuit development. Astrocytes are a notable example:¹⁷⁴ *in vivo*, they promote synapse formation, maturation, and activity-dependent synaptic engulfment. In cortical organoids, astrocytes spontaneously emerge^{14,15} and mature over long-term culture.^{14,21,69,86,87} Although evidence that mature astrocytes can promote cortical circuit development in organoids is limited, one study shows that astrocyte-derived secretomes can accelerate neuronal differentiation and enhance network activity.⁸⁸ By contrast, other key non-neuronal populations, such as microglia and endothelial cells, do not arise in cortical organoids, and others that do, such as OLs, show limited maturation. Neuromodulatory neurotransmitters that tune cortical states and circuit refinement are also missing. These gaps highlight the need to incorporate additional cell types and neuromodulatory inputs to achieve more physiologically complete cortical organoids (Figure 2).

Figure 2 Strategies to enhance human cortical organoid maturation. Approaches include (i) modeling the interaction of diverse brain regions with the developing cortex in multi-region organoids; (ii) mimicking spontaneous and evoked activity during development through exogenous stimulation; (iii) providing *in vivo*-like endogenous cues to enhance maturation through transplantation into a host brain; (iv) expanding cell diversity by incorporating microglia and vasculature and promoting oligodendrocyte maturation; and, (v) controlling circuit state and tuning via added neuromodulation.

Oligodendrocytes: OLs regulate cortical developmental timing, plasticity, and circuit function throughout life.^{89,90} Beyond their well-characterized role in myelination, they act as active circuit-specific regulators by phagocytosing axons and synapses, integrating synaptic inputs, and releasing extracellular matrix-related factors.⁸⁹⁻⁹³ Their dense innervation by cortical inhibitory neurons, which is especially pronounced during specific developmental windows, has linked them to key roles in activity-dependent circuit plasticity and refinement, particularly during critical periods.⁹² They also contribute to synchrony across cortical regions,⁹⁴ and their dysfunction is associated with several pathological conditions, including neurodevelopmental disorders.⁹¹

During development, cortical OLs arise later than astrocytes, originating from OPCs that first appear in two early migrating ventral waves, followed by a third wave generated locally.⁹⁵ Accordingly, OPCs and OLs also emerge in both unpatterned and cortically-patterned organoids, but only after prolonged maturation and with limited progression, resulting in absent or very sparse and immature myelin formation.^{7,14,15,96,97} Given this delayed and limited oligodendrogenesis, multiple approaches have been tested to accelerate OL appearance and maturation (reviewed in Huang et al.,⁴⁸ and extensively in Zeldich and Rajkumar⁹⁸). In brief, adding OPC-promoting factors to dorsal forebrain organoids enriches late-wave OLs,⁹⁹ while ventral forebrain organoids supplemented with glia-promoting media produce early-wave OLs and can generate myelin by five months.¹⁰⁰ Fusing treated dorsal and ventral forebrain organoids enables OPC migration and produces more mature OL features within six weeks compared with single-region organoids.¹⁰¹ However, myelination in these models remains limited, with few myelinated axons, poor compaction, and no nodes of Ranvier.⁹⁹⁻¹⁰¹ In contrast, these features do appear in midbrain organoids,¹⁰² where myelination occurs earlier than in the cortex *in vivo*, suggesting that cortical models with more advanced myelination may also be possible. More recent strategies, including trophic factors, pro-OPC geneover expression, and transplantation into the mouse brain, can produce earlier myelin (as soon as 12 weeks)¹⁰³⁻¹⁰⁶ and even nodes of Ranvier.¹⁰³ However, the effects of these developments on neurogenesis, cellular diversity, and astrogenesis remain untested.

Direct evidence that inclusion of mature OLs can enhance network dynamics in cortical organoids is currently absent. One recent study³⁰ detected network activity but did not assess whether the presence of OLs directly contributed to it. Overall, these strategies to increase myelination and OL maturation are encouraging, but further work is needed to clarify their potential impact on cortical circuit maturation in organoids.

Microglia: Microglia sculpts neuronal circuits by assisting with the elimination of weak synapses and releasing cytokines and growth factors that regulate neuronal excitability and plasticity.¹⁰⁷ They play a key role in refining cortical circuits, not only by shaping excitatory networks but also by regulating the development and output of cortical interneurons early in life.¹⁰⁸⁻¹¹¹ Microglia also helps maintain neural circuitry during development by modifying the perisynaptic matrix, the diffuse extracellular material surrounding dendritic and axonal terminals.¹¹² Furthermore, alterations in microglial number or function have been linked to neurodevelopmental disorders.^{113,114} Notably, microglia share a highly-conserved developmental origin across vertebrates: they largely arise from yolk sac-derived mesodermal progenitors early in embryogenesis, enter the brain through the nascent vasculature, and gradually spread across the forming cortex.¹¹⁵ In contrast, regionalized cortical organoids are patterned toward neuroectoderm and, thus, lack the mesodermal signals required to generate microglia, prompting the development of approaches to incorporate them into these models.

There are three main strategies to generate microglia-containing brain organoids:¹¹⁶ (i) co-culture, in which independently-derived microglia are combined with mature neural organoids at defined ratios; (ii) addition of microglia or microglial progenitors into pre-generated organoids; and (iii) spontaneous generation, which allows mesodermal lineages to emerge and produce endogenous microglia. Across these approaches, microglia have been shown to accelerate intrinsic and network-level maturation in cerebral organoids,¹¹⁷⁻¹¹⁹ midbrain organoids,¹²⁰ and cortical organoids, where microglia were generated through overexpression of a myeloid-specific factors.¹²¹ Microglia has also been observed to support synaptic pruning in cerebral organoids^{119,122} and in co-cultures with tripartite cortico-striatal-midbrain assembloids.¹²³ Interestingly, pathological overpruning and synaptic loss have been reported in cortical organoids containing microglia carrying genetic risk mutations associated with autism spectrum disorder.^{123,124} Microglia may also play neuroprotective roles in organoids, as suggested by observations in long-term cerebral organoids containing integrated iPSC-derived microglia.¹²⁵ Although these findings are promising, further work will be needed to clearly elucidate how microglia contribute to the maturation and increased structural and functional complexity of cortical organoids.

Vasculation: Vascularization of the cortex occurs early in embryonic development, with cells from the vasculature originating extracortically and migrating into the developing tissue.⁹⁵ This process is tightly regulated by reciprocal communication between vascular and neural lineages. In the cortex, endothelial cells (the cells that line the interior surface of blood vessels) have been shown to influence circuit formation by regulating excitatory and inhibitory neuronal migration, synaptogenesis, and synaptic strength.¹²⁶⁻¹²⁹ Disruption of these endothelial–neural interactions can alter migration patterns and may contribute to neurodevelopmental disorders.¹³⁰

A major driving purpose behind vascularizing cerebral and cortical organoids has been to enhance their long-term survival and enable the modeling of neurovascular development, including the formation of the neurovascular unit (NVU), angiogenesis, and blood–brain barrier features. Therefore, multiple strategies have been developed for vascular development in organoids, including co-culture methods, factor-based differentiation, genetic engineering, *in vivo* engraftment, and microfluidic platforms. Across these methods, researchers consistently report the formation of mature and functional vascular structures and in some cases even NVUs.¹³¹

Beyond these motivations, accumulating evidence suggests that vascularization can improve neuronal circuit quality within cortical organoids, although this area of study is very limited. Adding endothelial cells through various strategies appears to enhance molecular signatures of neuronal maturation, although often without electrophysiological validation.¹³²⁻¹³⁶ Complementary work using mouse endothelial–neuron co-culture models has shown pro-maturation effects, including enhanced neurite outgrowth, increased dendritic spine density, a higher number of excitatory synapses, and more advanced electrophysiological properties.¹³⁷ Notably, one study using human umbilical vein endothelial cells showed increased neuronal maturation, improved synaptic development, and more organized excitatory–inhibitory network activity in cortical organoids.²⁴ Together, these findings highlight that vascular components can actively contribute to the establishment of more mature and functionally organized cortical circuits. Future studies incorporating these cells into cortical organoids will be important to determine how they further improve cortical circuit development and function.

Neuromodulators: Five major neuromodulatory systems regulate cortical circuits: acetylcholine, histamine, dopamine, norepinephrine, and serotonin. They arise from subcortical nuclei in the basal forebrain, hypothalamus, midbrain, and hindbrain, which send long-range projections that broadly innervate the cortex.¹³⁸ Although traditionally considered slow and spatially-diffuse signals that act mainly through volume transmission, growing evidence shows that these neuromodulators can also exert rapid and spatially-precise effects.^{138,139} Across systems, neuromodulators shape cortical physiology by regulating neuronal excitability, synaptic plasticity, and large-scale network states, including thalamocortical pathways.^{140,141} They are essential for higher cognitive functions such as learning and memory^{138,141} and have been implicated in cortical development and in vulnerability windows linked to neurodevelopmental and psychiatric disorders.¹⁴²⁻¹⁴⁴ Despite their importance, their precise roles within cortical circuits remain understudied.

This knowledge gap is even greater in cortical organoids, where neuromodulatory signaling is largely absent. Although transcriptomic analyses indicate that many neuromodulatory neurotransmitters are present in cerebral organoids,⁸² and region-specific models have been generated, including serotonergic hindbrain organoids,¹⁴⁵ locus coeruleus-like norepinephrine neurons,¹⁴⁶ and dopaminergic midbrain organoids,¹⁴⁷ few studies have integrated these populations with cortical organoids or assessed their influence on cortical network maturation.

A notable exception is a cortico-striatal-midbrain assembloid showing dopamine-dependent cortical activity,⁵⁰ though its effects on network maturation remain untested. Focusing on glia, another promising study⁶⁵ showed that astrocytes from cerebral organoids engrafted into the mouse cortex enhanced their calcium responses and morphological complexity through modulation by cholinergic and dopaminergic inputs. Given the essential role of neuromodulators in tuning cortical circuits, introducing neuromodulatory systems into cortical organoids may be particularly valuable. This could be done by applying exogenous neuromodulatory signals or, more physiologically, by adding subcortical regions to reconstitute long-range neuromodulatory pathways. Such approaches could provide a powerful platform to uncover human-specific mechanisms of cortical maturation and refinement and to clarify how their disruption contributes to disease.

Multi-lineage approaches: In the last few years, new strategies have begun to incorporate multiple non-neuronal cell types into cortical organoids, an important advance given the essential bidirectional crosstalk among microglia, OLS, and other non-neuronal lineages that supports cortical circuit maturation.⁹¹⁻⁹³ A recent model integrating both microglia and OLS into cerebral organoids¹⁴⁸ highlighted some microglia-mediated remyelination after injury, underscoring the importance of introducing multiple non-neuronal cell types to increase biological realism. Although such dual integration is promising, its direct impact on circuit-level enhancement within organoid systems remains unexplored.

Building on this concept, strategies combining vascular and microglial elements yield further biologically relevant outcomes: vascular-cerebral assembloids show that microglia remain immunocompetent within a vascularized microenvironment,¹³⁶ and an iPSC-derived hematopoietic/endothelial co-induction strategy promotes early astrocytogenesis, supports functional microglia, and achieves perfusion following *in vivo* transplantation.¹⁴⁹ Extending these multisystem approaches, a three-dimensional human co-culture incorporating iPSC-derived microglia, OLS, and vascular cells together

with neurons and astrocytes reported enhanced neuronal synaptic protein expression, increased calcium transient frequency, elevated spike and burst rates, and reduced response latency to electrical stimulation relative to neuron-only monocultures. Consistently, transcriptomic signatures show heightened neuronal and synaptic maturation compared to neuron-astrocyte co-cultures, supporting the idea that diverse non-neuronal lineages may collaborate to promote cortical circuit maturation.¹⁵⁰

Overall, the field has successfully incorporated non-neuronal cells into cortical and other organoids, with flexible strategies to either promote their endogenous development or add them exogenously. Across several studies, such multisystem models show more advanced maturation than neuron-only cultures. Yet *in vivo*, diverse cell classes interact in tightly-regulated spatial and temporal patterns, and species-specific differences in cell-type proportions critically shape brain properties, implying that these proportions may need to be controlled to achieve normal network function. Key open questions concern which developmental stages, timings, combinations, and relative ratios of cell types provide the greatest benefit, and whether these cells interact during appropriate developmental windows to shape circuit-level behavior. Together, converging evidence suggests that multisystem cortical organoids are a promising route to more physiologically-complete reconstructions of human cortical maturation, particularly as they begin to be applied to disease modeling.

Future directions: challenges, applications and opportunities

As cortical organoids develop more mature and diverse circuits, they are opening new avenues for exploring human cortical development and function. These advances enable a new range of biological questions to be addressed directly in a human context, expanding the frontiers of developmental neuroscience.

The increasing complexity of next-generation organoids will likely enable the investigation of human-specific aspects of cortical microcircuit development, moving the field beyond earlier developmental events, such as fate specification, cell diversification, and migration. Although human and mouse cortex differ in specific cell-type identities, such as expanded interneuron and glial diversity, these distinctions do not fully explain the major evolutionary changes of the human cortex. More fundamental shifts in cell properties are thought to be key, including the expansion of outer radial glia that drives cortical enlargement, increases in callosal projection neurons, altered interneuron proportions, and the larger, more complex morphology of human pyramidal neurons.^{2,11} Building on this cellular foundation, major species differences also appear at the microcircuit level. While humans and rodents share the same basic cortical plan, human cortical microcircuits are sparser, more interneuron-centered, and more influenced by non-neuronal cells. Humans have fewer synapses overall, but these synapses (especially in upper layers and pyramidal-to-interneuron pathways) are stronger and more reliable.¹⁵¹⁻¹⁵³ Interneuron networks are expanded, with more inhibitory-to-inhibitory connections,¹⁵⁴ and primates show pronounced upper-layer expansion and cortico-cortical projection dominance.^{152,155} Additional human-specific shifts include changes in neuromodulatory receptor expression^{156,157} and more structured neuron-glia organization.^{155,158} These differences likely contribute to the distinctive features of human brain function and cognition. Still, the scope of these human-specific microcircuit specializations, their origins, and their impacts on cortical development and disease risk remain unresolved, questions that advanced cortical organoids could help address.

Beyond these microcircuit-level differences, the developmental tempo of human cortical networks is markedly prolonged, extending well into postnatal life and involving major shifts in circuit architecture, synaptic refinement, and myelination.^{6,159–161} Consequently, humans maintain extended and gradually closing windows of plasticity, allowing experience to influence circuit formation for much longer than in other species.^{159,160,162,163} Disruptions to this timing are often linked to neurodevelopmental disorders.¹⁶⁴ Next-generation organoids offer an experimentally accessible model for probing these slowly unfolding processes, perhaps highlighting how genetic or environmental factors shape the timing and flexibility of network formation and the mechanisms guiding human-specific cortical circuit maturation. Extending this framework, strategies linking cortical organoids to sensory structures or device-based interfaces could further clarify how experience molds developing circuits. Such systems would allow direct study of sensory processing, environmental responsiveness, and disorders affecting these pathways, providing a complementary platform for investigating experience-dependent refinement and critical period regulation.

Enhanced cortical organoids will also open the door to revealing mechanisms of neurodevelopmental disorders. Many of these conditions involve disruptions in synaptic function and circuit organization, to the point that they have been described as synaptopathies,¹⁶⁵ or, more recently, as connectopathies.¹⁶⁶ As organoids begin to capture more human-specific cellular and regional interactions and circuit motifs, they will enable deeper investigation of how genetic variants or environmental insults alter network-level function. These advances may also support more predictive therapeutic screening by allowing candidate compounds to be tested on human-like circuits that better reflect developing cortical dynamics. Emerging findings highlight this translational potential: a recent study⁶⁶ showed that an antisense oligonucleotide therapy can rescue core cellular and circuit defects in Timothy syndrome across dorsoventral forebrain assembloids and transplantation models, and efforts are now underway to translate this approach clinically.

Together, these advances position next-generation cortical organoids as powerful platforms for uncovering the cellular and circuit-level principles that shape human cortical development and disease. However, as these models become increasingly complex and versatile, they raise some ethical considerations. As noted in recent articles,^{167,168} the rapid advancement of neural organoid research is calling for discussions about higher order functions, the ethics of implanting organoids into other species, and the broader limits of the field.^{169–170} Together, these challenges underscore the need for careful oversight and a clear ethical framework for this area of research at large.

By capturing increasingly human-like features of cortical organization, cortical organoids provide a framework for investigating the origins of unique human traits, clarifying mechanisms that underlie neurodevelopmental vulnerability, and guiding more precise strategies for intervention.^{170–175} Organoids may never reproduce every nuance of the living human brain, but even without this, they hold promise to deliver powerful insights into human brain biology, development, and disease. With rapid methodological advances and growing efforts toward standardization, these models are becoming robust and flexible enough to drive new discoveries, opening avenues previously inaccessible in human neuroscience.

Author contributions

Marta Montero Crespo and Milagros Pereira Luppi contributed equally as co-first authors.

Acknowledgements

We thank Juliana R. Brown for editing of the manuscript. Work in the Arlotta lab related to the topics of this article is supported by grants from Stanley Center for Psychiatric Research and the National Institutes of Health (R01 MH112940 and UF1 MH130701) to P.A. Postdoctoral fellow M.P.L. was partially funded through a gift from the Denise A. and Eugene W. Chinery Foundation. We apologize to the authors whose work was not cited due to limited space.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

- Nowakowski TJ, Nano PR, Matho KS, et al. The new frontier in understanding human and mammalian brain development. *Nature*. 2025;647(8088):51–59.
- Vanderhaeghen P, Polleux F. Developmental mechanisms underlying evolution of human cortical circuits. *Nat Rev Neurosci*. 2023;24(4):213–232.
- Paşa SP, Arlotta P, Bateup HS, et al. A nomenclature consensus for nervous system organoids and assembloids. *Nature*. 2022;609:907–910.
- Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. *Nat Rev Mol Cell Biol*. 2025;26(5):389–412.
- Mayhew CN, Singhania R. A review of protocols for brain organoids and applications for disease modeling. *STAR Protoc*. 2023;4(1):101860.
- Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. *Nature*. 2013;501(7467):373–379.
- Quadrato G, Nguyen T, Macosko EZ, et al. Cell diversity and network dynamics in photosensitive human brain organoids. *Nature*. 2017;545(7652):48–53.
- Paşa AM, Sloan SA, Clarke LE, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. *Nat Methods*. 2015;12(7):671–678.
- Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. *Cell*. 2016;165(5):1238–1254.
- Velasco S, Kedaigle AJ, Simmons SK, et al. Individual brain organoids reproducibly form cortical cell diversity. *Nature*. 2019;570(7762):523–527.
- Yoon SJ, Elahi LS, Paşa AM, et al. Reliability of human cortical organoid generation. *Nat Methods*. 2019;16(1):75–78.
- Onesto MM, Kim J, Paşa SP. Assembloid models of cell–cell interaction to study tissue and disease biology. *Cell Stem Cell*. 2024;31(11):1563–1573.
- Sanchis–Calleja F, Azbukina N, Jain A, et al. Systematic scRNA-seq screens profile neural organoid response to morphogens. *Nat Methods*. 2025.
- Uzquiano A, Arlotta P. Brain organoids and human-specific brain development. *Curr Opin Genet Dev*. 2022;75:101955.
- Velasco S, Paulsen B, Arlotta P. 3D brain organoids: studying brain development and disease. *Annu Rev Neurosci*. 2020;43:375–389.
- Wu SR, Nowakowski TJ. Exploring human brain development using assembloids. *Neuron*. 2025;113(8):1133–1150.
- Bezgin G, Lewis JD, Evans AC. Developmental changes of cortical white–gray contrast as predictors of autism diagnosis and severity. *Transl Psychiatry*. 2018;8(1):249.
- Mamat M, Chen Y, Shen W, Li L. Molecular architecture of the altered cortical complexity in autism. *Mol Autism*. 2025;16(1):1.
- Ong LT, Fan SWD. Morphological and functional changes of cerebral cortex in autism spectrum disorder. *Innov Clin Neurosci*. 2023;20(10–12):40–47.

20. Uzquiano A, Kedaigle AJ, Pigni M, et al. Fate specification programs of the human cerebral cortex in organoids. *Cell*. 2022;185(20):3770–3788. e27.
21. Levy RJ, Paşa SP. What have organoids and assembloids taught us about the pathophysiology of neuropsychiatric disorders? *Biol Psychiatry*. 2023;93(7):632–641.
22. Faravelli I, Antón-Bolaños N, Brown JR, Arlotta P. Brain organoids: tools for understanding the uniqueness and individual variability of the human brain. *Annu Rev Genomics Hum Genet*. 2025;26:229–320.
23. Gordon A, Yoon SJ, Tran SS, et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. *Nat Neurosci*. 2021;24(3):331–342.
24. Shi Y, Sun L, Wang M, et al. Vascularized human cortical organoids model cortical development in vivo. *PLoS Biol*. 2020;18(5):e3000705.
25. Trevino AE, Sinnott-Armstrong N, Andersen J, et al. Chromatin accessibility dynamics in human forebrain development. *Science*. 2020;367(6476):eaay1645.
26. Trujillo CA, Gao R, Nograes PD, et al. Complex oscillatory waves emerging from cortical organoids. *Cell Stem Cell*. 2019;25(4):558–569.e7.
27. Guillamón-Vivancos T, Aníbal-Martínez M, Puche-Aroca L, et al. Sensory modality-specific wiring of thalamocortical circuits. *Nat Rev Neurosci*. 2025;26(10):623–641.
28. Molnár Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. *Science*. 2020;370(6514):eabb2153.
29. Penn AA, Shatz CJ. Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. *Pediatr Res*. 1999;45(4 Pt 1):447–458.
30. van der Kroeg M, Bansal S, Unkel M, et al. Human adherent cortical organoids in a multiwell format. *eLife*. 2024.
31. Mancinelli S, Bariselli S, Lodato S. The emergence of electrical activity in human brain organoids. *Stem Cell Rep*. 2025;20(9):102632.
32. Fair SR, Julian D, Hartlaub AM, et al. Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development. *Stem Cell Rep*. 2020;15(4):855–868.
33. Sharf T, van der Molen T, Glasauer SMK, et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. *Nat Commun*. 2022;13(1):4403.
34. van der Molen T, Spaeth A, Chini M, et al. Protosequences in brain organoids model intrinsic brain states. *bioRxiv*. Preprint. 2025.
35. Lim L, Mi D, Llorca A, et al. Development and functional diversification of cortical interneurons. *Neuron*. 2018;100(2):294–313.
36. Mayoral SR, Chan JR. The environment rules: spatiotemporal regulation of oligodendrocyte differentiation. *Curr Opin Neurobiol*. 2016;39:47–52.
37. Harris KD, Shepherd GMG. The neocortical circuit: themes and variations. *Nat Neurosci*. 2015;18(2):170–181.
38. Kirihara T, Luo Z, Chow SYA, et al. A human induced pluripotent stem cell-derived tissue model of a cerebral tract connecting two cortical regions. *iScience*. 2019;14:301–311.
39. Martins-Costa C, Wiegers A, Pham VA, et al. ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum. *Cell Stem Cell*. 2024;31(6):866–885.e14.
40. Osaki T, Duenki T, Chow SYA, et al. Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons. *Nat Commun*. 2024;15(1):2945.
41. Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids. *Nature*. 2017;545(7652):54–59.
42. Kim J, Imaizumi K, Thete MV, et al. Human assembloid model of the ascending neural sensory pathway. *bioRxiv*. Preprint. 2024.
43. Marcelo-Antunes ASL, Athie MCP, Caznok A, et al. Interregional human assembloids recapitulate fetal brain morphologies and enhance neuronal complexity. *bioRxiv*. Preprint. 2025.
44. Nguyen CV, Martija A, Nano PR, et al. Thalamic NRXN1-mediated input to human cortical progenitors drives upper-layer neurogenesis. *bioRxiv*. Preprint. 2025.
45. Nishimura M, Adachi S, Kodera T, et al. Thalamus–cortex interactions drive cell type-specific cortical development in human pluripotent stem cell-derived assembloids. *Proc Natl Acad Sci U S A*. 2025;122(47):e2506573122.
46. Nityanandam A, Patton MH, Bayazitov IT, et al. Protocol for generating human assembloids to investigate thalamocortical and corticothalamic synaptic transmission and plasticity. *STAR Protoc*. 2025;6(1):103630.
47. Patton MH, Thomas KT, Bayazitov IT, et al. Synaptic plasticity in human thalamocortical assembloids. *bioRxiv*. Preprint. 2024.
48. Shin D, Kim CN, Ross J, et al. Thalamocortical organoids enable modeling of 22q11.2 microdeletion. *Cell Stem Cell*. 2025;31(3):421–432.
49. Xiang Y, Tanaka Y, Patterson B, et al. Fusion of regionally specified organoids models interneuron migration. *Cell Stem Cell*. 2017;21(3):383–398.e7.
50. Reumann D, Krauditsch C, Novatchkova M, et al. In vitro modeling of the human dopaminergic system using spatially arranged assembloids. *Nat Methods*. 2023;20(12):2034–2047.
51. Andersen J, Revah O, Miura Y, et al. Generation of functional human 3D cortico–motor assembloids. *Cell*. 2020;183(7):1913–1929.
52. Kim K, Lee Y, Jung KB, et al. Highly stretchable 3D microelectrode array for noninvasive functional evaluation of cardiac spheroids and midbrain organoids. *Adv Mater*. 2025;37(6):2570046.
53. Miura Y, Kim JI, Jurjut O, et al. Assembloid model to study loop circuits of the human nervous system. *bioRxiv*. Preprint. 2024.
54. Hernandez S, Schweiger HE, Cline I, et al. Self-organizing neural networks in organoids reveal principles of forebrain circuit assembly. Preprint.
55. Walsh RM, Crabtree GW, Kalpana K, et al. Forebrain assembloids uncover schizophrenia-associated defects. *Neuron*. 2025;113(19):3185–3203.e7.
56. Kiecker C, Lumsden A. Compartments and their boundaries in vertebrate brain development. *Nat Rev Neurosci*. 2005;6(7):553–564.
57. Kiecker C, Lumsden A. The role of organizers in patterning the nervous system. *Annu Rev Neurosci*. 2012;35:347–367.
58. Jang H, Kim SH, Koh Y, Yoon KJ. Engineering brain organoids: toward mature neural circuitry with an intact cytoarchitecture. *Int J Stem Cells*. 2022;15(1):41–59.
59. Antón-Bolaños N, Faravelli I, Faits T, et al. Brain chimeroids reveal individual susceptibility to neurotoxic triggers. *Nature*. 2024;631(8019):142–149.
60. Espuny-Camacho I, Michelsen KA, Gall D, et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. *Neuron*. 2013;77(3):440–456.
61. Linaro D, Vermaercke B, Iwata R, et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. *Neuron*. 2019;104(5):972–986.e6.
62. Daviaud N, Friedel RH, Zou H. Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex. *eNeuro*. 2018;5(6):ENEURO.0219-18.2018.

63. Dong X, Xu SB, Chen X, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation. *Mol Psychiatry*. 2021;26(7):2964–2976.
64. Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids. *Nat Biotechnol*. 2018;36(5):432–441.
65. Xu SB, Li XR, Fan P, et al. Single-cell transcriptome landscape of transplanted human brain organoids. *Adv Sci (Weinh)*. 2024;11(28):e202402287.
66. Chen X, Birey F, Li MY, et al. Antisense oligonucleotide therapeutic approach for Timothy syndrome. *Nature*. 2024;628(8009):818–825.
67. Jgamacz D, Lim JT, Zhang Z, et al. Structural and functional integration of human forebrain organoids with the injured adult rat visual system. *Cell Stem Cell*. 2023;30(2):137–152.e7.
68. Revah O, Gore F, Kelley KW, et al. Maturation and circuit integration of transplanted human cortical organoids. *Nature*. 2022;610(7931):319–326.
69. Wang M, Zhang L, Novak SW, et al. Morphological diversification of human astrocytes in transplanted organoids. *Nat Biotechnol*. 2025;43(1):52–62.
70. Wilson MN, Thunemann M, Liu X, et al. Multimodal monitoring of implanted human cortical organoids. *Nat Commun*. 2022;13(1):7945.
71. Faravelli I, Antón-Bolaños N, Wei A, et al. Human brain organoids record the passage of time over multiple years in culture. *bioRxiv*. Preprint. 2025.
72. Wagenaar DA, Pine J, Potter SM. Rich bursting patterns during cortical culture development. *BMC Neurosci*. 2006;7:11.
73. Alam El Din DM, Moenkemöller L, Loeffler A, et al. Human neural organoid microphysiological systems show the building blocks necessary for basic learning and memory. *Commun Biol*. 2025;8(1):1237.
74. Zafeiriou MP, Bao G, Hudson J, et al. Developmental GABA polarity switch in neuronal organoids. *Nat Commun*. 2020;11(1):3791.
75. Hergenreder E, Minotti AP, Zorina Y, et al. Combined small-molecule treatment accelerates maturation of human pluripotent stem cell-derived neurons. *Nat Biotechnol*. 2024;42(10):1515–1525.
76. Li XH, Hu N, Chang ZH, et al. Brain organoid maturation and implantation integration based on electrical signal input. *J Adv Res*. 2024;73:375–395.
77. Chow SYA, Hu H, Duenki T, et al. Repetitive stimulation modifies network characteristics of neural organoid circuits. *bioRxiv*. Preprint. 2025.
78. Le Floch P, Li Q, Lin Z, et al. Stretchable mesh nanoelectronics for 3D single-cell chronic electrophysiology from developing brain organoids. *Adv Mater*. 2022;34(11):e2106829.
79. Li TL, Liu Y, Forro C, et al. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids. *Biomaterials*. 2022;290:121825.
80. Kopic I, Dedousi P, Schmidt S, et al. Inkjet-printed 3D electrode array for recording signals from cortical organoids. *Adv Mater Technol*. 2024;9(22):202400645.
81. Ozaki T, Ohta N, Ma J, Hirano M. 360° size-adjustable microelectrode array system for electrophysiological monitoring of cerebral organoids. *Front Bioeng Biotechnol*. 2025;13:1596009.
82. Park SB, Koh B, Kwon HS, et al. Quantitative and qualitative analysis of neurotransmitter and neurosteroid production in cerebral organoids during differentiation. *ACS Chem Neurosci*. 2023;14(20):3761–3771.
83. White LE, Coppola DM, Fitzpatrick D. Sensory experience and orientation selectivity maturation. *Nature*. 2001;411:1049–1052.
84. Fernando M, Lee S, Wark JR, et al. Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin. *Stem Cell Rep*. 2022;17(6):1476–1492.
85. Fligor CM, Lavekar SS, Harkin J, et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. *Stem Cell Rep*. 2021;16(9):2228–2241.
86. Pagliaro A, Artegiani B, Hendriks D. Emerging approaches to enhance human brain organoid physiology. *Trends Cell Biol*. 2025;35(6):483–499.
87. Sloan SA, Darmanis S, Huber N, et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids. *Neuron*. 2017;95(4):779–790.e6.
88. Zheng H, Feng Y, Tang J, et al. Astrocyte-secreted cues promote neural maturation in forebrain organoids. *Nat Commun*. 2025;16(1):2845.
89. Bonetto G, Belin D, Káradóttir RT. Myelin: a gatekeeper of activity-dependent circuit plasticity? *Science*. 2021;374(6569):eaba6905.
90. Fletcher JL, Makowiecki K, Cullen CL, Young KM. Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. *Semin Cell Dev Biol*. 2021;118:14–23.
91. Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. *Cell Mol Life Sci*. 2024;81(1):181.
92. Liu X, Xin DE, Zhong X, et al. Small-molecule-induced epigenetic rejuvenation promotes CNS myelin regeneration. *Cell*. 2024;187(10):2465–2484.e22.
93. Mazuir E, Fricker D, Sol-Foulon N. Neuron–oligodendrocyte communication in myelination of cortical GABAergic cells. *Life (Basel)*. 2021;11(3):216.
94. Xin W, Kaneko M, Roth RH, et al. Oligodendrocytes and myelin limit neuronal plasticity. *Nature*. 2024;633(8031):856–863.
95. Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Development of cell identity and diversity in the cerebral cortex. *Neuron*. 2024;S0896-6273(24)00282-4.
96. Lancaster MA. Unraveling mechanisms of human brain evolution. *Cell*. 2024;187(21):5838–5857.
97. Matsui TK, Matsubayashi M, Sakaguchi YM, et al. Six-month cultured cerebral organoids from human ES cells contain matured neural cells. *Neurosci Lett*. 2018;670:75–82.
98. Zeldich E, Rajkumar S. Identity and maturity of iPSC-derived oligodendrocytes. *Cells*. 2024;13(8):674.
99. Madhavan M, Nevin ZS, Shick HE, et al. Induction of myelinating oligodendrocytes in human cortical spheroids. *Nat Methods*. 2018;15(9):700–706.
100. Marton RM, Miura Y, Sloan SA, et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. *Nat Neurosci*. 2019;22(3):484–491.
101. Kim H, Xu R, Padmashri R, et al. Pluripotent stem cell-derived cerebral organoids reveal human oligodendrogenesis with dorsal and ventral origins. *Stem Cell Rep*. 2019;12(5):890–905.
102. Monzel AS, Smits LM, Hemmer K, et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. *Stem Cell Rep*. 2017;8(5):1144–1154.
103. Feng L, Chao J, Zhang M, et al. Developing a human iPSC-derived three-dimensional myelin spheroid platform for modeling myelin diseases. *iScience*. 2023;26(11):108037.
104. James OG, Selvaraj BT, Magnani D, et al. iPSC-derived myelinoids to study myelin biology of humans. *Dev Cell*. 2021;56(9):1346–1358.e6.
105. Ma L, Mei Y, Xu P, et al. Fast generation of forebrain oligodendrocyte spheroids from human embryonic stem cells. *iScience*. 2022;25(10):105172.
106. Shaker MR, Pietrogrande G, Martin S, et al. Rapid and efficient generation of myelinating human oligodendrocytes in organoids. *Front Cell Neurosci*. 2021;15:631548.

107. Peña-Ortega F. Microglial modulation of neuronal network function and plasticity. *J Neurophysiol.* 2025;133(2):661–680.

108. Gesuita L, Cavaccini A, Argunsa AO, et al. Microglia contribute to the postnatal development of cortical somatostatin-positive inhibitory cells and to whisker-evoked cortical activity. *Cell Rep.* 2022;40(7):111209.

109. Hu Y, Tao W. Current perspectives on microglia–neuron communication in the central nervous system. *J Adv Res.* 2024;66:251–265.

110. Liu K, Gao Y, Wu X, et al. Microglia phagocytosis of perineuronal nets mediates PV-positive interneuron dysfunction. *Neuropharmacology.* 2025;262:110205.

111. Yu D, Jain S, Wangzhou A, et al. Microglia regulate GABAergic neurogenesis via IGF1. *bioRxiv.* Preprint. 2024.

112. Crapser JD, Arreola MA, Tsourmas KI, et al. Microglia as hackers of the matrix. *Cell Mol Immunol.* 2021;18(11):2472–2488.

113. Lukens JR, Eyo UB. Microglia and neurodevelopmental disorders. *Annu Rev Neurosci.* 2022;45:425–445.

114. Luo Y, Wang Z. The impact of microglia on neurodevelopment and brain function in autism. *Biomedicines.* 2024;12(1):210.

115. Shimizu T, Prinz M. Microglia across evolution: from conserved origins to functional divergence. *Cell Mol Immunol.* 2025;22(12):1533–1548.

116. Di Stefano J, Di Marco F, Cicalini I, et al. Generation, interrogation, and future applications of microglia-containing brain organoids. *Neural Regen Res.* 2025;20(12):3448–3460.

117. Fagerlund I, Dougalis A, Shakiryanova A, et al. Microglia-like cells promote neuronal functions in cerebral organoids. *Cells.* 2022;11(1):124.

118. Rittenhouse A, Krall C, Plotkin J, et al. Microglia-containing neural organoids as brain microphysiological systems. *Front Cell Neurosci.* 2025;19:1616470.

119. Xu R, Boreland AJ, Li X, et al. Cerebral organoids with controllable microglia ratios. *Stem Cell Rep.* 2021;16(8):1923–1937.

120. Sabater-Soler S, Nickels SL, Saraiva C, et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation. *Glia.* 2022;70(7):1267–1288.

121. Cakir B, Kiral FR, Park IH. Advances in vitro models: microglia in action. *Neuron.* 2022;110(21):3444–3457.

122. Ormel PR, Vieira de Sá R, van Bodegraven EJ, et al. Microglia innately develop within cerebral organoids. *Nat Commun.* 2018;9(1):4167.

123. Wu J, Wang Y, Li X, et al. Microglia replacement halts progression of microgliopathy. *Science.* 2025;389(6756):eadr1015.

124. Wu J, Zhang J, Chen X, et al. Microglial over-pruning of synapses in autism-associated SCN2A deficiency. *Mol Psychiatry.* 2024;29(8):2424–2437.

125. Chen X, Sun G, Feng L, et al. Human iPSC-derived microglial cells protect neurons from neurodegeneration in long-term cultured adhesion brain organoids. *Commun Biol.* 2025;8(1):30.

126. Li S, Haigh K, Haigh JJ, Vasudevan A. Endothelial VEGF sculpts cortical cytoarchitecture. *J Neurosci.* 2013;33(37):14809–14815.

127. Li S, Kumar TP, Joshee S, et al. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. *Cell Res.* 2018;28(2):221–248.

128. Segarra M, Aburto MR, Cop F, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication. *Science.* 2018;361(6404):eaao2861.

129. Won C, Lin Z, Kumar TP, et al. Autonomous vascular networks synchronize GABA neuron migration. *Nat Commun.* 2013;4:2149.

130. Ahirwar LK, Blackburn SL, McBride DW, Kumar TP. Reviewing vascular influences on neuronal migration, cortical development, and neurodevelopmental disorders: focus on autism, ADHD, and schizophrenia. *Mol Psychiatry.* 2025;30(12):5953–5966.

131. Kistemaker L, van Bodegraven EJ, de Vries HE, et al. Vascularized human brain organoids: current possibilities and prospects. *Trends Biotechnol.* 2025;43(6):1275–1285.

132. Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system. *Nat Methods.* 2019;16(11):1169–1175.

133. Chai YC, To SK, Simorgh S, et al. Spatially self-organized three-dimensional neural centroid. *Adv Sci (Weinh).* 2024;11(5):2304421.

134. Fumadó Navarro J, Crilly S, Chan WK, et al. Cerebral organoids with integrated endothelial networks emulate the neurovascular unit and mitigate core necrosis. *Adv Sci (Weinh).* 2025;12(43):e07256.

135. Song L, Yuan X, Jones Z, et al. Assembly of human stem cell-derived cortical and vascular spheroids. *Sci Rep.* 2019;9(1):5977.

136. Sun XY, Ju XC, Li Y, et al. Generation of vascularized brain organoids to study neurovascular interactions. *eLife.* 2022;11:e76707.

137. Wu KW, Mo JL, Kou ZW, et al. Neurovascular interaction promotes cortical neuron maturation. *Front Cell Neurosci.* 2017;11:290.

138. Galvin VC, Disney AA. Neuromodulation in cortical circuits. In: Usrey WM, Sherman SM, eds. *The Cerebral Cortex and Thalamus.* New York, NY: Oxford University Press. 2023.

139. Disney AA, Higley MJ. Diverse spatiotemporal scales of cholinergic signaling in the neocortex. *J Neurosci.* 2020;40(4):720–725.

140. Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. *Neuroscience.* 2002;111(4):815–835.

141. Mei J, Rodriguez-Garcia A, Takeuchi D, et al. Improving adaptive and continuous learning in artificial neural networks. *arXiv.* 2025;2501.06762.

142. Arnsten AFT, Wang M, D’Esposito M. Dynamic network connectivity: from monkeys to humans. *Front Hum Neurosci.* 2024;18:1353043.

143. Chandler DJ, Waterhouse BD, Gao WJ. New perspectives on catecholaminergic regulation of executive circuits. *Front Neural Circuits.* 2014;8:53.

144. Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates. *Neuropsychopharmacology.* 2022;47(1):309–328.

145. Valiulah P, Vidyawan V, Puspita L, et al. Generation of caudal-type serotonin neurons and hindbrain-fate organoids. *Stem Cell Rep.* 2021;16(8):1938–1952.

146. Tao Y, Li X, Dong Q, et al. Generation of locus coeruleus norepinephrine neurons from human pluripotent stem cells. *Nat Biotechnol.* 2024;42(9):1404–1416.

147. Deyab G, Thomas RA, Ding XE, et al. Midbrain organoids with an SNCA gene triplication display dopamine-dependent alterations in network activity. *bioRxiv.* Preprint. 2025.

148. Lange S, Ebeling M, Loyer A, et al. Human myelinated brain organoids with integrated microglia as a model for myelin repair and remyelinating therapies. *Sci Transl Med.* 2025.

149. Raguin J, Kortulewski T, Bergiers O, et al. Advanced human cerebral organoids as a model for investigating glioma stem cell interactions. *bioRxiv.* Preprint. 2024.

150. Stanton AE, Bubnys A, Agbas E, et al. Engineered 3D immuno-glia-al-neurovascular human miBrain model. *Proc Natl Acad Sci U S A.* 2025;122(42):e2511596122.

151. Hunt S, Leibner Y, Mertens EJ, et al. Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex. *Cereb Cortex.* 2023;33(6):2857–2878.

152. Shen Y, Shao M, Hao ZZ, et al. Multimodal nature of the single-cell primate brain atlas. *Neurosci Bull.* 2024;40(4):517–532.

153. Wildenberg GA, Rosen MR, Lundell J, et al. Sparse primate cortical connectivity compared to mouse. *Cell Rep.* 2021;36(11):109709.

154. Loomba S, Straehle J, Gangadharan V, et al. Connectomic comparison of mouse and human cortex. *Science.* 2022;377(6602):eab0924.

155. Fang R, Xia C, Close JL, et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. *Science.* 2022;377(6601):56–62.

156. Hodge RD, Bakken TE, Miller JA, et al. Conserved cell types with divergent features in human versus mouse cortex. *Nature.* 2019;573(7772):61–68.

157. Jorstad NL, Close J, Johansen N, et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. *Science.* 2023;382(6667):eadff6812.

158. Shapson-Coe A, Januszewski M, Berger DR, et al. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. *Science.* 2024;384(6696):eadk4858.

159. Nishio M, Liu X, Mackey AP, et al. Humans have a longer period of cortical maturation across depth and hierarchy than macaques. *PLoS Biol.* 2025;23(9):e3003378.

160. Nishio M, Liu X, Mackey AP, Arcaro MJ. Myelination across cortical hierarchies and depths in humans and macaques. *bioRxiv.* Preprint. 2025.

161. Sherwood CC, Gómez-Robles A. Brain plasticity and human evolution. *Annu Rev Anthropol.* 2017;46:399–419.

162. Hensch TK. Critical period regulation. *Annu Rev Neurosci.* 2004;27:549–579.

163. Reh RK, Dias BG, Nelson CA, et al. Critical period regulation across multiple timescales. *Proc Natl Acad Sci U S A.* 2020;117(38):23242–23251.

164. Shang Z, Zhang X. Postnatal critical-period brain plasticity and neurodevelopmental disorders. *J Genet Genomics.* 2025;52(10):1177–1188.

165. Grant SG. Synaptopathies: diseases of the synaptome. *Curr Opin Neurobiol.* 2012;22(3):522–529.

166. Yamasaki T, Maekawa T, Fujita T, et al. Connectopathy in autism spectrum disorders. *Front Neurosci.* 2017;11:627. doi:

167. Leslie M. As neural organoids advance, ethics races to keep pace. *Science.* 2025;390(6775):773–774.

168. Pașca SP, Arlotta P, Campbell P, et al. The need for a global effort to attend to human neural organoid and assembloid research. *Science.* 2025;390(6773):574–577.

169. Huang J, Zhu Y, Tang J, et al. Navigating brain organoid maturation: from benchmarking frameworks to multimodal bioengineering strategies. *Biomolecules.* 2025;15(8):1118.

170. Kook MG, Lee SE, Shin N, et al. Generation of cortical brain organoid with vascularization by assembling with vascular spheroid. *Int J Stem Cells.* 2022;15(1):85–94.

171. Lee SH, Dan Y. Neuromodulation of brain states. *Neuron.* 2013;76(1):209–222.

172. Marder E. Neuromodulation of neuronal circuits: back to the future. *Neuron.* 2012;76(1):1–11.

173. Miura Y, Li MY, Birey F, et al. Generation of human striatal organoids and cortico-striatal assembloids. *Nat Biotechnol.* 2020;38(12):1421–1430.

174. Raghu Nathan K, Eroglu C. Developmental roles of astrocytes in circuit wiring. *Curr Opin Neurobiol.* 2025;92:103042.

175. Yang X, Forró C, Li TL, et al. Kirigami electronics for electrophysiology of neural organoids. *Nat Biotechnol.* 2024.