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Abstract

Despite significant advancements in therapeutic approaches to triple-negative breast
cancer, treatments remain relatively ineffective once metastasis occurs. The introduction
of immunotherapy has revolutionized oncological therapies, yet significant hurdles
remain before its full potential can be realized. In this review, we examine immune escape
mechanisms shared between pregnancy (the ‘fetal allograft’) and cancer. We discuss the
use of abortion-inducing agents in the context of cancer immunotherapy, and we also
provide rationale and preliminary data on FloraStilbene™, a combination of the polyphenol
antioxidant pterostilbene and the glucocorticoid receptor antagonist mifepristone, for the
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Introduction

Breast cancer is the most prevalent oncological condition in
females and represents a significant medical problem.! According to
a 2022 estimate by the American Cancer Society, there were 287,850
newly diagnosed cases of breast cancer with invasive properties. From
1989 to 2019, the mortality rate from breast cancer was reported to be
41% higher in black women compared to white women, presumably
due to later diagnoses.” It is widely accepted that about 10% of
breast cancers are associated with mutations, such as alterations in
BRCA1 and BRCA2.? Breast cancer is typically categorized based
on the expression of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2), with
cells lacking all three—referred to as ‘triple-negative’- considered the
most invasive.*

The treatment of early-stage breast cancer typically involves a
combination of surgery,’ radiation therapy,® and systemic therapy
(such as chemotherapy, hormonal therapy, or targeted therapy).” The
specific treatment plan depends on various factors, including the size
and location of the tumor, its spread to the lymph nodes, and the
patient’s overall health condition and preferences. The most common
surgical options are lumpectomy or mastectomy. Radiation therapy
is often recommended after surgery to help eradicate any remaining
cancer cells and reduce the risk of recurrence, using high-energy

radiation to target the affected area of the breast. Systemic therapy
may also be recommended for some patients with early breast cancer,
particularly if the cancer is hormone receptor-positive or HER2-
positive.

As the disease progresses, the primary goal of treating advanced
breast cancer shifts towards controlling the spread of the cancer,
managing symptoms, and improving the patient’s quality of life.®
Common treatments for advanced breast cancer include: systemic
therapy- such as chemotherapy, hormone therapy, targeted therapy, and
immunotherapy-designed to attack cancer cells throughout the body;
surgery to remove or debulk the primary tumor or large metastases,
or to alleviate symptoms such as pain or dyspnea; radiation therapy,
which may be used to shrink tumors and relieve symptoms like pain,
neurological symptoms, or dyspnea; and palliative care, focusing on
providing support to patients and families by managing symptoms,
maintaining quality of life, engaging in goals-of-care discussions,
and addressing the emotional and psychological effects of the
disease. Treatment for advanced breast cancer is typically focused on
managing the disease rather than curing it, and thus may be ongoing
and change over time depending on the cancer’s response to therapy.

Historically, cancer immunotherapy has focused on melanoma
and renal cancers, with the possibility of immunotherapy for breast
cancer being relatively understudied.” Due to the higher incidences
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of immunologically mediated spontaneous remissions in these two
cancers, they have traditionally been viewed as ‘immunogenic’.!*"
This review will discuss more recent findings suggesting that immune
responses in breast cancer may exist and can be therapeutically
leveraged.!'®

The immune system fights breast cancer

Immunotherapy offers the ability to specifically target and kill
tumor cells without some of the toxicity associated with traditional
oncological therapies such as radiation and chemotherapy. Despite
initial controversies regarding the natural role of the immune
system in controlling cancer development, a theory known as
‘immunosurveillance’,'’ it is now widely accepted that the immune
system not only keeps cancer at bay but also that that proper immune
stimulation can be used as a therapy for cancer.’® Initial clinical
approvals of immunotherapy began with immunogenic tumors such
as melanoma and kidney cancer.'® but it eventually expanded to other
cancers, including breast cancer.?

This expansion is underscored by the recognition of tumor
immunogenicity, which is determined partly by whether immune cells
infiltrate the cancer and whether this correlates with a better or worse
prognosis. Melanoma, for instance, was identified as immunogenic
through studies demonstrating that ‘tumor-infiltrating lymphocytes’
(TILs) were associated with enhanced survival.?! The active role of
TILs in suppressing the tumor was demonstrated in reports where
TILs were extracted from patients, expanded outside the body—free
from the tumor’s immunosuppressive pressures—and then re-infused
into the same patients.” In three consecutive clinical trials using TILs,
objective response rates between 49% and 72% were observed in
advanced melanoma.? Furthermore, it was shown that the re-infused
cells homed back to the tumor,?*% leading to the discovery of the first
tumor-specific antigens, the melanoma-associated antigen (MAGE)
family.?

Similarly, in breast cancer, numerous studies have demonstrated a
correlation between TILs and improved survival. Ren et al. examined
68 patients with triple-negative breast cancer and found a strong
correlation between tumor infiltration by T cells, specifically CD3 and
CDS8, and longer progression-free survival.?”’” Similar findings have
been reported by other independent researchers.®* An increased
number of TILs is associated with a better response to therapy.® It is
believed that TILs control the tumor through direct killing, primarily
by CD8 cytotoxic lymphocytes,’' as well as by suppressing tumor
growth and angiogenesis, mediated by the production of cytokines
such as interferon-gamma.’? The secretion of perforin and granzyme
B by CD8 T cells, known mechanisms of cellular destruction,
logically correlates with improved survival, a finding that has indeed
been demonstrated.’

Building on the role of specific immune cells, T cells are known
to eradicate cancer by recognizing molecular signatures on tumors
known as “tumor-associated antigens.” Cancerous cells, to gain an
advantage over normal cells, often start producing new proteins that
are not typically found in the adult body, usually mutated versions
of existing proteins. When cancer begins producing these proteins, T
cells recognize and attempt to eliminate the tumor.

T cells are considered part of the adaptive immune system,
because of their ability to create immunological memory. Innate
immune system cells, such as natural killer (NK) cells, are another
mechanism of protection from neoplasia. Unlike T cells, which
recognize peptides presented on HLA molecules, NK cells eliminate
cells that lack HLA molecules. HLA molecules serve as a ‘negative
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signal’ that prevents NK cell activation; a mechanism central to the
‘missing self” hypothesis.** Originally thought of as the immune
system’s ‘backup’ when cancer cells down regulate HLA to evade T
cell-mediated killing, NK cells also target cells expressing proteins
indicative of ‘cellular stress.” Given that cancer cells produce proteins
at a much faster rate than normal cells, they express these ‘danger
proteins,” which activate NK cells.** Studies have demonstrated that
breast cancer patients with higher levels of NK cell activity tend to
live longer than those with lower levels.*

Breast cancer fights the immune system

If the body has such potent means of protecting itself against
cancer, why do tumors arise and progress? One of the main reasons
is that cancer effectively leverages components of the immune system
that down regulate immunity after immune recognition. One such
immune regulatory mechanism involves T regulatory (Treg) cells.
These cells have been demonstrated to protect the body against
autoimmunity,’’ transplant rejection,* and immunologically mediated
miscarriages.® Importantly, this mechanism is co-opted by cancer
cells to escape immune destruction.

One example of this is a study by Bates et al. who assessed the
numbers of Treg cells (identified by FOXP3 expression) in tissue
microarray cores from pure ductal carcinoma in situ (DCIS), invasive
breast cancer, or from comparable areas of normal terminal duct
lobular breast tissue. Treg cell numbers were significantly higher in
samples from in situ and invasive breast carcinomas than in normal
breast tissue. Importantly, high numbers of FOXP3-positive Treg cells
identified patients with DCIS at increased risk of relapse and patients
with invasive tumors with both shorter relapse-free and overall
survival. Another important finding in the same study was that high
numbers of FOXP3-positive Treg cells can identify patients at risk
of relapse after 5 years.* The correlation between Treg numbers and
poor prognosis has been reported by other studies.** Interestingly,
some drugs used in breast cancer, such as estrogen blockers, may
reduce Treg numbers.*

Besides being associated with poor prognosis Tregs also play a
role in response to therapy. In a clinical study, 93 patients with breast
cancer diagnosed by core-needle biopsy (CNB) and treated with
primary systemic chemotherapy (PSC) were examined. CNB and
surgically resected specimens were stained with a FOXP3 mouse
monoclonal antibody to compare the numbers of FOXP3- positive
cells in the tumors before and after PSC. A median cut-off value of
>16.3/high power field (HPF) and >6.6/HPF defined high numbers of
Tregs in CNB and in surgical specimens, respectively. The patients
were assigned into four groups (HH, high number of FOXP3-positive
cells in both CNB and surgical specimen; LL, low number in both
specimens; HL, high in CNB and low in the surgical specimen; LH,
low in CNB and high in surgical specimen). Lymph vessel invasion-
positive, clinically non-responder and ER-negative tumors contained
significantly more FOXP3- positive cells after PSC. Prognosis was
better among patients with low numbers than high numbers of FOXP3-
positive cells both in CNB and in surgically resected specimens. In
multivariate analysis, the LL group demonstrated significantly better
recurrence-free survival than the non-LL group (LH, HL, and HH).
These findings suggest that the number of FOXP3-positive cells
identified during PSC represents a promising predictive factor that
might also be an important therapeutic target for breast cancer.*?

In another study, it was shown that pathologic complete responses
(pCR) to chemotherapy in breast cancer patients were associated
with decreases of intratumor Tregs. High CDS8 infiltration and no
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Foxp3 infiltration on final histologic specimens were independently
associated with pCR. This study suggests that Treg cells may be
suppressing the activity of effector cells that otherwise could be
capable of killing the tumor.*

Cancer suppressing effects of RU-486

In the search novel immune stimulators researchers have
exampled biological situations that may resemble the growth and
progression of neoplasia. Correlations between cancer and pregnancy
have previously been made based on shared characteristics such as
angiogenesis, cellular trafficking, and immune modulation.*® The
process of immunologically mediated miscarriage is associated with
similar types of immune responses as those seen in tumors regressing
from immunotherapy, specifically, activation and infiltration of NK
cells,*-*! macrophages,*>>* and CD8 cytotoxic T cells.® Given these
similarities, the authors questioned whether agents that terminate
pregnancy might also have effects against cancer. Abortogenic agents
have been shown to possess anticancer properties; these include agents
that suppress indoleamine 2,3-dioxygenase,***' myeloid-derived
suppressor cells,® %7 and Treg,®"" as well as checkpoint inhibitors.”
Furthermore, cancer and pregnancy share numerous means of
immune evasion, including over-expression of Fas ligand,”° hCG,”~
8 HLA-G,* PD-L1,%-% TIM-3,>%% arginase,” and VISTA.!%-102

RU-486, now known as mifepristone, was originally synthesized
by Georges Teutsch based on experiments aimed at developing
artificial steroids. The name originates from the name of the company
that developed it, Roussel-Uclaf (RU), and it was compound number
38486, shortened from RU-38486 to RU-486. This compound was
first noted for its potent binding to the glucocorticoid receptor and
for blocking glucocorticoid biological activities in tissue culture.
Subsequently, it was found to block progesterone receptor activity
only in the presence of progesterone. This finding led to studies on
its abortifacient effects, which are associated with erosion of the
endometrium, detachment of the chorion from the decidua basalis,
atrophy of the corpus luteum, enhanced uterine contractibility, cervical
softening and dilatation, and eventual expulsion of the embryo and
endometrium.'® Although the abortifacient effects have been ascribed
to progesterone receptor antagonism, there is increasing evidence that
immunological mechanisms such as suppression of Treg cell activity
play a significant role in its action.'® Given the fundamental role of
Treg cell activity in cancer’s escape from the immune response, if
RU486 can reduce the number or activity of these cells, it may have a
potential role as a cancer therapeutic.

One suggestion that RU-486 may induce abortion in part
through immune modulation came from Mao et al., who showed
that progesterone increases the numbers of Treg cells as well as
augmenting their immune suppressive activity. Blocking progesterone
signaling with RU-486 resulted in a loss of Treg number and activity,
which correlated with immunological cell infiltration, inflammatory
cytokine secretion, and eventual fetal loss.'” A direct cause-and-
effect relationship between Treg loss and fetal death was illustrated
in a publication in which RU-486 was administered to pregnant mice,
resulting in impaired Treg functional competence, increased cytotoxic
CD8 T cells, and fetal loss. Importantly, adoptive transfer of Treg
cells- but not conventional T cells- alleviated fetal loss.'™ Essentially,
this shows that depletion of Treg cells is a mechanism of action, as the
transfer of healthy Treg cells prevented abortion.

Besides inducing immunity by reducing Treg cells, RU-486 also
augments the maturation of dendritic cells. These cells, classically
known as ‘professional antigen-presenting cells’ for their unique
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ability to activate naive T cells,'” promote the generation of Treg cells

and a healthy pregnancy when in an immature state.!””-'% Conversely,
when dendritic cells are mature, they no longer induce the generation
of Treg cells but instead lead to immune activation.'” Just as Treg cells
allow for cancers to escape immune killing, immature dendritic cells
have been shown to provide means of tumor immune evasion through
the induction of energy in tumor-reactive T cells or conversion to Treg
CCHS‘I 10,111

Yinghuaetal., conducted a series of experiments to assess the ability
of RU-486 to alter immunity by DC manipulation.'"? They showed
that the drug promoted the expression of the DC maturation markers
CD80, CD86, and ICAM-1 while decreasing the cancer-associated
immune suppressive molecules indoleamine 2,3-dioxygenase''*!!?
and TGF-beta.!'s Importantly, when Tregs were cultured with RU486-
cultured DC, the Tregs lost suppressive activity. These experiments
suggest that RU486 possesses a direct maturation-inducing effect on
DC, which blocks Treg generation through modulating the upstream
cytokine TGF-beta.

It appears that some parallels may exist between the process of RU-
486 induction of immunological reactions against the ‘fetal allograft’
and immune-mediated tumor rejection. If this is the case, then it is
important to provide an overview of existing work evaluating this
abortogen in the context of oncology.

Immune stimulatory effects of RU-486

The mechanisms of cancer immunity induced by RU-486 could
involve the reduction of Tregs, which is associated with immune
suppression in numerous cancers, inhibition of glucocorticoid
signaling, and suppression of transforming growth factor beta (TGF-
beta) activity. In one series of experiments, BALB/c-green fluorescent
protein (GFP)+ bone marrow (BM) cells were transplanted into
immune deficient NSG mice to generate an immune competent NSG/
BM-GFP+ (NSG-R) mouse model. Treatment with RU-486 inhibited
the growth of 59-2-HI tumors and caused alterations in the tumor
microenvironment similar to those observed in fetal loss. Tumors in
RU-486-treated immune competent mice showed increased infiltration
of F4/80+ macrophages, natural killer, and CD8 T cells, displaying
a central memory phenotype. Mechanistically, RU-486 induced
immunogenic cell death both in vitro and in vivo, as depicted by the
expression and subcellular localization of the alarmins calreticulin
and HMGB-1, and the induction of a gene program characteristic
of immunogenic cell death. Moreover, RU-486-treated tumor cells
efficiently activated immature DC, evidenced by enhanced expression
of MHC-II and CD86, and induced a memory T-cell response,
attenuating tumor onset and growth after re-challenge. Of relevance to
current clinical oncology, RU-486 treatment increased the sensitivity
of tumors to inhibition of the PD-L1 checkpoint.'’

To demonstrate that RU-486 induces anticancer immunity through
immune stimulation and not necessarily progesterone inhibition, a
series of experiments were conducted using several human prostate
cancer cell lines in murine immune deficient and immune competent
hosts. The experiments assessed effects of RU-486 alone or in
combination with IL-12 adenoviral gene therapy. Treatment of human
PC3 prostate xenograft (androgen independent) or TRAMP-CI
tumors (androgen receptor positive) with the combination AdSIL-12
vector and RU-486 produced significantly better therapeutic efficacy
compared to controls. Additionally, combination therapy increased
the capacity of tumor sentinel lymph node lymphocytes to produce
Granzyme B in response to tumor cell targets. Finally, combination
therapy tended towards a decrease in CD4+/FoxP3+ T regulatory cell
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populations in the draining lymph nodes. These experiments provide
in vivo support for the hypothesis that RU-486 directly acts as an
immune stimulator.!®

In addition to its immune modulating anticancer effects, RU-486
has been reported to directly suppress neoplasia in several animal
models. For example, in one study, sixty-one mice developing
spontaneous leukemia were treated with RU-486 and 33 controls
with olive oil. Quality of life was determined by body conditioning
score (BCS). Treatment was initiated when the mice were 6 months
old. Within 2 weeks of therapy, 11.4% of the RU-486 treated mice
died compared to a 50% mortality in the control group. The BCS
was 5 (highest quality) in 82% of treated mice vs. 11% of controls
after 2 weeks of therapy.'" Similar therapeutic responses were seen
in a lung cancer model where mice received RU-486 at 0.3 mg three
times weekly from 8 weeks compared to olive oil in the controls. The
survival at one year for mice treated with mifepristone was 57.6% vs.
26.6% for controls.'?

Use of RU-486 in cancer patients

Clinical signals exist suggesting the potential utility of RU-486
in oncology. In one report, RU-486 was administered at 200 mg
per day orally to two patients with stage IV colon cancer suffering
from extensive metastases. This regimen was well-tolerated, and
both patients not only survived far longer than expected but also
experienced marked improvements in quality of life and increased
energy upon initiating RU-486. Though the metastatic lesions did
not disappear, no new ones appeared for a substantial time, and the
existing ones did not grow.!?!

In contrast to many therapeutic interventions, RU-486 appears
not to be limited by the blood-brain barrier. A 43-year-old male with
end-stage stage IV glioblastoma multiforme was treated exclusively
with RU-486 at 200 mg orally daily. The patient exhibited definite
palliative effects for several weeks and lived significantly longer than
predicted before treatment.'*

Additionally, two case reports describe the administration of
mifepristone monotherapy daily at 200 mg to a moribund woman with
never-treated metastatic lung cancer and a male with bilateral renal cell
carcinoma who had undergone only a unilateral hemi nephrectomy.
Both patients experienced long-term high-quality survival- 5 years
for the patient with lung cancer, with complete remission of all lung
lesions, and 12 years for the male patient with kidney cancer. Neither
patient reported any treatment-associated adverse effects.!?

Interestingly, RU-486 may also show activity in patients where
other treatments have failed. A 68-year-old woman suffering from
metastatic non-small cell lung cancer progressed despite treatment
with a checkpoint inhibitor (nivolumab) and three rounds of multi-
agent chemotherapy. After 1.5 years of treatment with single-agent
mifepristone, her cancer remained stable, with some tumor regression
reported.'?* Similar therapeutic outcomes were published for cases of
pancreatic cancer,'” leukemia, and osteosarcoma.'?®

The therapeutic potential of RU-486 has not been restricted to
solid tumors alone. In one report, an 81-year-old woman with chronic
lymphocytic leukemia, which had progressed to an acute rapidly
progressing stage, was treated with only 200 mg of mifepristone daily.
The patient showed dramatic improvement upon initiation of therapy
and maintained remission until the time of publication, which was 12
months.'”’
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Optimizing anticancer efficacy of RU486:
formulating with Pterostilbene

Res Nova Biologics Inc has screened various compounds for
augmentation of RU-486’s immune modulatory efficacy. The naturally
derived compound pterostilbene was identified as possessing the
strongest ability to enhance multiple cancer inhibitory biological
activities of RU-486. This compound is a naturally derived analogue
of resveratrol'?® and has been shown to possess therapeutic activity in
a wide variety of conditions, including diabetes, aging, depression,
and brain injury.'®

Mechanistically, pterostilbene exhibits several interesting
biological functions, including activation of NRF2, which mediates
numerous anti-apoptotic activities,"**"3! suppression of NF-kappa,'*?
and inhibition of p38 MAP kinase,'® both potent mediators of
inflammation. Interestingly, the effects of pterostilbene on cancer can
be considered paradoxical; it appears to have anti-apoptotic effects in
non-malignant cells,'** while inducing death in transformed cells both
in vitro'>%¢ and in vivo.'’

In the context of immunotherapy, pterostilbene possesses
numerous interesting properties. According to United States Patent
#9682047B2, administration of pterostilbene was capable of
enhancing the therapeutic effects of interleukin-2 in a murine model of
melanoma. The immune stimulatory activities of pterostilbene appear
to function through the suppression of feedback inhibition loops. For
example, immune activation using agents such as interleukin-2 or toll-
like receptor activators stimulates the immune suppressive enzyme
cyclo-oxygenase 2 (COX-2),1%%1% which produces prostaglandin
E2, a known promoter of Treg cell generation dependent on COX-2
activity.'*

Another mechanism by which pterostilbene stimulates antitumor
immunity is by down regulating oxidative stress and neutrophil
activity, which are associated with numerous tumors and the
suppression of T cell immunity through cleavage of the TCR-
zeta chain."! Pterostilbene has been shown to suppress neutrophil
activation in various systems, including a melanoma model of
metastasis,'* a cardiac ischemic reperfusion model,'** and an arthritis
model.'** Mechanistically, pterostilbene induces accelerated apoptosis
of activated neutrophils through a caspase-3 dependent mechanism
and suppresses the production of oxidative radicals at a pre-apoptotic
stage.'*

Additionally, augmentation of tumor sensitivity to NK cell-
mediated killing by pterostilbene has been reported. Yulin et al reported
that pterostilbene treatment enhanced the expression of NK group 2
member D (NKG2D) ligands- major histocompatibility complex
class I chain-related proteins A and B (MICA/B) on prostate cancer
cells. These molecules are typically seen as activators of NK natural
cytotoxicity towards cancer cells. The authors found that inhibition
of miR-20a by pterostilbene was occurring, which normally silences
expression of the 3’ untranslated region (UTR) of MICA/B. Blocking
expression of miR-20a by pterostilbene results in up regulation of
MICA/B, making prostate cancer cells significantly more sensitive to
NK-mediated killing."*¢ Given that RU-486 enhances NK activity, a
potent synergy is anticipated between these two agents. Accordingly,
we initiated a series of experiments to assess this hypothesis.

FloraStilbene preclinical data

In order to assess whether FloraStilbene possesses ability to
suppress tumor growth, the classical triple negative 4T1 model
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was utilized. 4T1 cells were grown in RPMI 1640 media in a fully
humidified atmosphere with 5% carbon dioxide. 4T1 triple-negative
murine breast cancer cells were administered to female BALB/c mice
at a concentration of 500,000 cells per mouse in the mammary pad.
Mice were treated with either a) saline; b) pterostilbene at 2 mg/kg;
¢) RU-486 at 3 mg/kg; or d) a combination of pterostilbene and RU-
486. Each treatment group consisted of 10 mice. As shown in Figure
1 below, significant synergy was observed in the regression of this
model of breast cancer.

| Control BPters @RU4EE BFter + RUMEE

Tumor Size (mmy(3))
g
(=]

10 Days 20 Days

30 Days
Figure | Suppression of 4T| growth by FloraStilbene.

FloraStilbene™ increases NK cell activity. Tumor-bearing mice
treated as described above were sacrificed at the indicated times, and
NK activity was assessed using the MTT cytotoxicity assay against
labeled 4T1 cells. It is known that MTT readings correspond to the
number of cells present in the exponential growth phase. To utilize
the MTT assay, MTT liquid was made at (10ul MTT solution in each
100ul media) added to each well and the plates were then incubated
at 37°C for 5 hours. Subsequently, the remaining MTT solution was
discarded DMSO was added to each well to dissolve the formazan
crystals. The plates were shaken for 5 minutes on a plate shaker to
ensure adequate solubility. Absorbance readings of each well was
performed at 540 nm (single wavelength) using a multi scan plate
reader.

NK cells were extracted from spleens using Magnetic Activated
Cell Sorting (MACS) by Miltenyi Biotec, according to the
manufacturer’s instructions. NK cells were plated at a 10 to 1 ratio. As
seen in Figure 2 below, an increase in NK cell activity was observed
with FloraStilbene™ treatment.

mControl aPtero aRU486 aPterno + RU4BE

35 4
30
25

20 4

NK Cytotoxicity (%)

10 Days

20 Days 30 Days

Figure 2 FloraStilbene increases NK activity.

In order to mechanistically assess the immuno modulatory activity
of FloraStilbene, the expression of the TCR zeta chain was assessed.
Erythrocyte depleted samples were examined by flow cytometry using
intracellular cytokine staining. Briefly, 2 mm monensin was added

Copyright:
©2024 Ramos et al. 49

to T cells for 4 h. Cells were fixed with 2% PFA and permeabilized
with FACS buffer (PBS supplemented with 5% FBS and 0.1%
sodium azide) containing 0.1% saponin. An anti-TCR zeta chain
antibody, was used for indirect staining prior to a secondary goat
antimouse R-phycoerythrin-conjugated antibody. Protection from
loss of TCR-zeta was observed, suggesting a possible mechanism of
immune-preservation/immune stimulation by FloraStilbene figure 3.

& Control aPtoro BRUAES BFtomn + RU4SE

40

20

TCR Zeta Chain (Percent of Cancer Free)
g

10 Days

20 Days

30 Days
Figure 3 FloraStilbene protects TCR zeta.

Conclusion

Clinical uses of FloraStilbene

Stimulation of immunity to cancer is major unrealized goal.
Preliminary data presented supports the possible use of combinations
of pterostilbene and RU486. These studies have limitations, however
early clinical responses have been observed which will be the subject
of future publications.

We believe that increasing the activity of NK cells could enhance
the efficacy of drugs already on the market for the treatment of breast
cancer. For example, trastuzumab (Herceptin) represents a significant
therapeutic modality whose efficacy is influenced by NK activity.
In one study, immunological responses were assessed in 26 patients
receiving trastuzumab monotherapy as maintenance management
after chemotherapy (8 mg/kg load and then standard doses of 6 mg/kg
every 3 weeks). Cytotoxic activity against the MHC class [-negative
standard NK target K562 cell line and HER2-specific ADCC against
a trastuzumab-coated HER2-positive SKBR3 cell line were assessed
in peripheral blood mononuclear cells (PBMC) harvested after the
first standard dose. After six months, seventeen patients were scored
as responders and nine as non-responders according to the RECIST
criteria, while progression-free survival (PFS) was calculated
during a 12-month follow-up. It was shown that the responders had
significantly higher levels of both NK and ADCC activities that were
not different from those of eleven normal controls. The NK activity
of the non-responders was significantly lower than that of the normal
controls. At twelve months, there was a marked correlation between
PFS and NK activity only. PFS was significantly longer in patients
with high levels of NK activity, whereas its pattern was unrelated to
high or low ADCC activity.'"’

Based on the direct and indirect cancer inhibiting properties of
RU486 and pterostilbene, as well as our pilot data, we conclude that
the FloraStilbene product being developed by Res Nova Biologics
possesses promising potential as a monotherapy or as an adjuvant to
existing immunotherapies.
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