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Introduction
Fast evolution of Artificial Intelligence (AI) in recent times and 

its continuously increasing use in everyday life is helping people in 
a number of ways. AI has emerged as an immense help in different 
medical disciplines including managing everyday requirements like 
reminder for necessary activities to needy individuals like patients 
and their care givers. In healthcare industry, careful and systematic 
documentation of data has led to an accumulation of enormous 
amount of information across all medical disciplines. While this 
wealth of data enhances diagnosis and treatment capabilities and 
accuracies, it also presents significant challenges. The sheer volume 
of information itself can overwhelm clinicians, making it difficult 
to identify relevant insights while addressing a specific condition. 
At the same point, the rapid evolution of medical knowledge means 
that staying current is progressively becoming a daunting task, often 
referred to as information overload. As a result, navigating the vast 
array of data for even a single condition can become a challenge for 
healthcare providers. Finding effective ways to streamline data access 
and use it in improving decision-making processes is crucial to ensure 
that clinicians can deliver the best possible care without being dragged 
down by the complexities generated by the amount of modern medical 
data. To meet the challenge, The AI assistance for navigating the path 
for the welfare of patients is gradually becoming not only desirable 
but also unavoidable. The term Artificial Intelligence (AI) was coined 
by John McCarthy in 1956 during a conference held on this subject.1 
Since then, AI is evolving rapidly in the field of healthcare industry, 
and various AI applications have been and are being developed 
to counteract some of the most pressing problems that healthcare 
individuals and organizations are currently facing and which is likely 
to continue in coming future. It is crucial for healthcare individuals 
including leaders to understand the state of AI technologies and the 
ways that such technologies can be used to improve the efficacy, 
safety, and providing health services while providing value-based 
health care services.

Use of the AI is playing significant roles in different fields of 
medical practice which includes diagnosis, surgery, post-surgical 
management etc. Evolution of different AI means has made its use 
in to our daily lives in many forms like personal assistants (Siri, 

Alexa, Google assistant etc.), to patients. More recently, AI is being 
incorporated into medical practices to improve patient care by 
speeding up different processes with greater accuracy, and thereby 
paving the path to provide better healthcare overall. Reading and 
interpreting radiological images, pathology slides, and patients’ 
electronic medical records (EMR) are being evaluated by machine 
learning which is aiding in the process of diagnosis and planning 
treatments for patients. These processes are augmenting physicians’ 
capabilities in helping the needy patients. Herein we describe the 
current status of AI in medicine, the way it is used in the different 
disciplines and future trends.

In clinical set ups AI is already playing significant roles in a number 
of fields like Disease diagnosis, Disease treatment, and prognosis. 
The use of AI is greatly augmenting abilities of the researchers in 
Drug development, determining Biomarkers regarding development 
or recession of some pathological condition, Gene editing, and 
prescribing personalized medicine.

AI in disease diagnosis
Medical imaging has increasingly been playing key roles in 

diagnosing severe problems like fractures and tumours. Using that 
data including those recorded on plain X-ray films have been used 
as inputs in AI algorithms to teach them to diagnose a number of 
indications like bone fractures, lung conditions, such as pneumonia, 
emphysema, and tuberculosis or stones in kidneys or gall bladder. 
These abilities are also being used to detect bone age, maturity, and 
fractures.2–6 AI programs equipped with data generated using chest 
computed tomography (CT) scans from normal individuals and 
smokers can identify chronic obstructive pulmonary disease, its stage, 
and prognosis.7 Cancer diagnosis and prognosis following treatments 
is another field where AI has been tested and has proved to be as good 
as humans, including malignancy detection in pathology images, 
in screening mammography, in CT or magnetic resonance imaging 
(MRI) or positron emission tomography (PET) scans, and skin clinical 
images.8–20 AI trained with data from endoscopic images and videos 
have reached human-like accuracies in gastrointestinal indications 
like detection of gastrointestinal neoplasms, or oesophageal cancers, 
gastric cancers, or large bowel polyps.21–23 
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Abstract

With careful and systematic documentation of data in healthcare industry, an enormous 
amount of data has been accumulated in each discipline of medicine. This amount of data 
comes with at least a couple of consequences. On one hand, it helps better diagnose and 
treat a condition while on the other it is too big and very fast evolving to keep pace with for 
both researchers and clinicians. To help a clinician navigating the vast array of data even 
for one condition becomes very demanding. This article provides a guide to understand the 
fundamentals of AI technologies (i.e., machine learning, natural language processing, and 
AI voice assistants) as well as their applications/ implications in healthcare and stem cell 
therapy.
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Cardiologists are also using AI equipped with information sets 
obtained after processing data recorded from various data generating 
vehicles like electronic health records (EHR), electrocardiography, 
echocardiography, coronary artery calcium scoring, coronary CT 
angiography, and MRI in diagnosing, severity classification of 
cardiovascular diseases, and prognosis.24–27 Use of AI models can 
also predict outcomes given specific diagnostic parameters such as 
pulmonary hypertension by 3D cardiac MRI processing.28 

Studies in the field of neuroscience have demonstrated that AI 
can: (i) help predict the diagnosis of autism in high-risk children 
by processing brain magnetic resonance imaging (MRI), (ii) assess 
the progression of dementia by processing a single amyloid PET 
scan, (iii) detect intracranial haemorrhage on CTs, and (iv) diagnose 
schizophrenia and predict the risk of suicide by the processing of 
functional MRIs (fMRIs) and HER.29–34 Also, timely diagnosis of 
infectious diseases in terms of pathogen identification and antibiotic 
susceptibility testing is feasible through ML processing of bacterial 
Raman spectra or bacterial and viral mRNA.35,36

Artificial Intelligence (AI) and stem cell medicine are two of 
the most transformative technologies in modern science, each with 
the potential to significantly impact healthcare. When combined, 
they promise to accelerate breakthroughs in regenerative medicine, 
personalized treatments, and the understanding of complex diseases. 
The intersection of AI and stem cell research is ushering in a new era 
of medical innovation that could redefine the future of healthcare.

Stem cell medicine: a primer
Stem cells, because of their totally undifferentiated or partially 

differentiated state, are unique in their ability to differentiate into 
various cell types, which makes them incredibly valuable tool for 
medical research and therapy. In the field of regenerative medicine, 
stem cells can be used to repair damaged tissues and organs, offering 
potential treatments for conditions like Parkinson’s disease, diabetes, 
heart disease, and spinal cord injuries. Stem cells also play a critical 
role in drug discovery, disease modelling, and personalized medicine, 
enabling researchers to study diseases at a cellular level and develop 
tailored therapies.

Stem cells are a few resident undifferentiated or partially 
differentiated cells, present in almost all tissues of the body with 
varying number, which unlike other cells of the body, have ability 
to differentiate into almost all or at least more than one cell types 
depending on their undifferentiated state. In addition, these cells 
have paracrine ability, evident by their abilities of secreting a 
number of cell signalling cytokines and growth factors in response 
to surrounding environment. Which makes them incredibly valuable 
for medical research and therapy. In regenerative medicine, stem 
cells can be used to repair damaged tissues and organs, thus offering 
potential treatments for degenerative indications like Parkinson’s 
disease,37 diabetes,38 heart disease,39 IBDs,40 spinal cord injuries,41 and 
dermatological indications42 to name a few. Mesenchymal stem cells 
(MSCs) have been shown to possess immune modulatory properties 
which helps reduce inflammation, many times the basic cause of a 
degenerative indication like arthritis.43 These cells can modulate the 
function of the innate and adaptive immune response.  Numerous 
clinical trials have been using MSCs for various indication like 
myocardial infarction, Crohn’s disease, multiple sclerosis, diabetes, 
GvHD, amyotrophic lateral sclerosis, arthritis, neurodegenerative 
disorders, trauma, coronavirus disease 2019, and many more have 
shown encouraging outcomes.44 Stem cells also play a critical role 
in drug discovery, disease modelling, and personalized medicine, 

enabling researchers to study diseases at a cellular level and develop 
tailored therapies.

AIs in drug discovery
Artificial intelligence-assisted drug discovery and development 

has accelerated the growth of the pharmaceutical sector exponentially, 
thereby, leading to revolutionary changes in the pharma industry.45 AI-
driven machines greatly help in deciphering 3D shapes of molecules 
which is a very computation intensive process. The understanding of 
the 3D shapes of molecules helps in designing inhibitors of molecules 
which are considered to be critical for developing an indication.46 
De novo drug design by AI helps create chemical entities based 
biological targets like receptors or its known activators or inhibitors 
(ligands or antagonists-ligand like molecules which do not dissociate 
and inhibit).47 Major components of de novo drug design include 
3D description of a receptor active site or modelling of its ligand 
pharmacophore, then synthesis of suitable molecules (sampling), and 
their evaluation to bring about the desired effects in clinics. 

AIs help in stem cell research and clinical use
AI brings advanced computational power and data-driven insights 

into the complex field of stem cell biology as the uses of AIs, which 
possess the ability to analyse very vast datasets, identify patterns, 
help make predictions and, thus, help accelerate the pace of stem cell 
research in several key areas. A few of those are listed below.

Use of AI in stem cell culture: AI is playing very significant roles in 
cell culture. Automated incubators, cell counters, a number of other 
automated instruments are greatly reducing human inputs including 
manual work and, thereby, greatly helping the researchers and 
clinicians to grow a large number of stem cells for studies as well as 
for clinical usages.

Use of AI in stem cell therapy: One of the key challenges in using 
stem cells in clinics is directing those to respond to specific indication. 
AI has raised major hopes in this aspect for a synergistic approach 
that augments human expertise.48 AI algorithms can analyse clinical 
data to identify the optimal conditions for differentiation, reducing 
trial and error in laboratory settings. By predicting how stem cells 
will behave under certain conditions, AI can streamline the creation 
of specialized cells for research and therapeutic use.49 Similarly, AI 
can guide a clinician to use the type and amount of stem cells for 
any particular indication like arthritis, heart diseases, or diabetes. 
Also, AI can help clinicians in selecting the route and process of the 
administration of the cells.

Challenges and ethical considerations
AI could assist in identifying optimal stem cell therapies and 

predicting outcomes, but it’s crucial that AI systems undergo rigorous 
validation. AI models must be designed to accurately assess the 
risks associated with treatments. Regulatory bodies like the FDA 
(or their international equivalents) need to ensure that AI-assisted 
medical decisions are backed by solid evidence and that these 
technologies undergo extensive clinical trials before being widely 
used. Furthermore, the integration of AI requires the collection and 
analysis of vast amounts of patient data, which raises concerns about 
data privacy and security. AI must operate within strict frameworks of 
regulatory agencies, such as the General Data Protection Regulation 
(GDPR) in Europe or HIPAA in the U.S., to safeguard patient 
confidentiality. Even though AI can process vast amounts of data and 
make complex predictions, it should not replace the role of human 
judgment. Medical professionals must still play an integral part in 
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the decision-making process, using their expertise to interpret AI 
recommendations and to make the final decisions about treatment. It’s 
essential that AI be used as a tool to support healthcare providers, 
rather than substitute them entirely, especially in a field as nuanced 
and personalized as stem cell medicine.

AI is increasingly involved in medical decision-making, there will 
be questions around accountability. If an AI system’s decision leads 
to adverse outcomes, who is responsible? The designers, healthcare 
providers, or the AI itself? Clear guidelines need to be developed 
to ensure that responsibility for clinical decisions remains clearly 
defined and that there are mechanisms for accountability.

The future of AI and stem cell medicine
The partnership between AI and stem cell research is still in its 

early stages, but its potential is enormous. As AI continues to evolve, 
it will likely uncover new insights into the biology of stem cells, 
enabling more precise and effective treatments for a wide range of 
diseases. The helm of applying these innovations in clinical practice, 
the future of healthcare could see AI-guided stem cell therapies 
becoming routine, offering personalized, regenerative treatments that 
could extend lifespans and improve quality of life for millions.

In conclusion, AI and stem cell medicine are poised to revolutionize 
healthcare by offering ground-breaking solutions for previously 
untreatable conditions. Their combined power promises not only to 
speed up scientific discovery but also to bring about a new era of 
personalized and regenerative medicine.
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