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Introduction
Firearm injury is a serious public health problem in the United 

States (US) costing more than $70-75 billion annually.1,2 Non-
fatal gunshot injuries in the US have increased from 20.5 per 
100,000 Americans in 2002 to 23.7 per 100,000 by 2011, mainly 
due to increased assaults.3 Despite increasing incidence, timely 
neurosurgical intervention aided with improved neuro imaging and 
advances in acute trauma management have lowered the firearm 
fatality rate.4–6 Thus, among the estimated 5.3 million people living 
in the US with traumatic brain injury (TBI)-related disability, the 
proportion of gun-shot wound survivors has been rising steadily.3,7–11 
Among head injuries, penetrating injuries (PTBI) are associated 
with the worst outcomes.12,13 and no effective restorative treatment 
beyond physical therapy is currently available to mitigate post-TBI 
disability.12–14 Therefore, there is an urgent need to explore additional 
treatment options to address long term TBI related disabilities. 
Studies with preclinical models have demonstrated that failure of 
injury-induced regenerative neurogenesis; chronic inflammation and 
atrophy underlie poor outcomes.15–17 Loss of neurons and consequent 
brain atrophy is a consistent neuro pathological finding in TBI 
survivors and may underlie long-term functional deficits, resulting 
in reduced executive and integrative capability.18–20 Human PTBI 
neuro pathological findings support neuronal and axonal loss with 
significant brain atrophy.21 The milestones in neural stem cell (NSC) 
research were outlined in a review by Gage and Temple, pioneers of 
the field.22 NSCs afford the plasticity to generate, repair, and change 
nervous system function thus are of great interest to basic scientists 
as well as clinicians. NSCs have not blossomed into a therapeutic as 
yet and in this article some the issues that underlies the dormancy 
are discussed. The cell therapy field needed to address four main 
issues before clinical trials can be started. Firstly, production of the 
cell therapy candidate under good manufacturing conditions (GMP), 
second discovery of efficient immunosuppression, third demonstration 
of therapeutic benefit under controlled conditions. Three decades of 
basic science has managed to address first two issues.

Step 1 Cell therapy candidate

Neural stem cells have several characteristics that make them 
ideal candidates for brain repair, including a relatively high potential 
for neuronal differentiation.1,23–25 Several preclinical studies have 

evaluated the efficacy of rodent neural precursor cells in TBI rodent 
models.22,26–30 The culturing NSCs in vitro started as an attempt to 
grow multipotent embryonic cortical tissue (the word neural stem 
cells was not yet coined) and successfully accomplished in 1989 at 
the University of Miami.31 This work evolved when Martin Raff, a 
Canadian born Boston neurologist decided to move to England and 
chose to leave the United States (US) than fight in Vietnam War and 
to pursue immunology.32 After elucidating the properties of T-cells 
and B-cells, in a bid to stay on a new research plan was hatched. It 
was to raise antibodies against cells of the nervous system and use 
them to distinguish and separate the different cell types so that their 
development and interactions could be studied, albeit mainly in a 
culture dish.32 One his students was Sally Temple, she worked on 
have a cell-intrinsic mechanism that helps determine when precursor 
cells should stop dividing and differentiate into oligodendrocytes. 
She published her work during her brief stop at University of Miami 
before heading off to Albany, NY from where she still contributes 
to the NSC field.22,33 Attempts to identify the growth factors required 
for culturing these cells was pioneered at NIH under Ron McKay. 
Initially the group misidentified NGF.34,35 as a NSC growth factor 
only to come back later with the right one.36 This set stage for two 
companies namely Neural stem Inc., and Stem cells Inc. Both have 
produced stable cells under good manufacturing practice “GMP 
standard” conditions, secured FDA approval to use the cells in human 
clinical trials. In the past decade, Neural stem Inc. had developed NSI-
566, an epigenetically expanded bank of NSC derived from 8-week 
human fetal spinal cord, which is not on the Federal moratorium list 
for funding.37 These cells have been subject to extensive preclinical 
safety testing and characterization, by multiple independent labs with 
multiple immunosuppression regimens.38–44 The cells are produced 
under stable good manufacturing practice “GMP standard” conditions, 
and have been recently tested in several animal models. They are 
subject of three ongoing FDA approved clinical trials including a 
Phase II study for amyotrophic lateral sclerosis (ALS), a trial for 
ischemic stroke, and a Phase I study for chronic spinal cord injury.26 
As of 2015, a total of 49 ALS patients have received NSI-566 cells. 
Both the cells and surgery were well tolerated and the ALS studies 
reported a 47% responder rate with decline in disease progression and 
improved grip strength. Stem cells inc., on the other hand lost a patent 
dispute to NSI and recently closed operations.
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Abstract

Traumatic brain injuries often result in disability in survivors. Unresolved inflammation 
and ongoing neurodegeneration underlies the disability. Human neural stem cells 
(NSCs) are attractive candidates that can address both issues at once. Despite several 
preclinical studies and start-up companies over the past two decades, the approach is 
not yet in the clinic. In this mini review, I present two steps that brought the NSCs 
from lab to Phase I/II trials and final two breakthroughs that may be necessary to 
facilitate clinical application.

Keywords: traumatic brain injury, neurodegeneration, human neural stem cells, 
firearm injury, neuro imaging

Journal of Stem Cell Research & Therapeutics 

Mini Review Open Access

https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.15406/jsrt.2016.01.00027&domain=pdf


One step at a time, stem cell therapy for traumatic brain injury needs two more breakthroughs 161
Copyright:

©2016 Shyam

Citation: Shyam G. One step at a time, stem cell therapy for traumatic brain injury needs two more breakthroughs. J Stem Cell Res Ther. 2016;1(4):160‒164. 
DOI: 10.15406/jsrt.2016.01.00027

Step 2 Immunosuppression 

Transplantation of the cells conferred benefits such as restoration of 
injured neuronal morphology45 and cognitive function.46 even without 
immunosuppression. Transient immunosuppression was shown to be 
sufficient to support engraftment and transplanted derived neurons 
were reportedly present 6 months post transplantation.47 However, 
no data quantifying either engraftment or behavior modification 
were presented. Such studies were limited by cyclosporine mediated 
immunosuppression which resulted in persistence of barriers to 
engraftment and demonstration of effectiveness of the approach.48–50 
The initial optimism was replaced by skepticism if the therapeutic 
potential of neural stem cells: greater in people’s perception than 
in their brains.51,52 The US Food and Drug Administration (FDA; 
Rockville, MD) guidelines on preclinical assessment of cell therapies 
in the publication “Guidance for Industry: Preclinical Assessment of 
Investigational Cellular and Gene Therapy Products”.53,54 A review of 
literature shows human cell therapy in rat TBI that measure cognitive 
benefit have not addressed donor cell fate past one-month post-
transplantation.1,55 Further the experts in the field recommended that 
8‑week survival period prior to assessments would allow sufficient 
time for differentiation and integration of human neural stem cells with 
the host and possibly validate the presumed mechanism of action.1,26 
The successful preclinical ALS, SCI and stroke studies.40,41,44,56 
have employed a different immunosuppression technique that was 
pioneered by Hefferan et al.40 This technique relies on three agents 
namely: mycophenylate mofetil, tacrolimus and methyl prednisolone. 
The combination has been found to be superior to cyclosporine, a 
standard immunosuppressant between 1999-2012.

Step 3 Mechanism of action 

However, due to the lack of exact mechanism of action still 
precludes attempts to move neural stem cell therapy to the clinic.26 
Paul Lu et al.41 demonstrated the mechanism of regeneration in spinal 
cord injury models.41 Axonal growth was partially dependent on 
mammalian target of rapamycin (mTOR), but not Nogo signaling. 
Grafted neurons supported formation of electrophysiological relays 
across sites of complete spinal transection, resulting in functional 
recovery. The recovery was lost subsequent to re-transection of the 
spinal cord. With modern sophisticated methods such as functional 
connectivity under optogenetic control would provide necessary 
evidence for mechanism of action.57 

Step 4 safety 

Variety of companies have derived and developed human fetal 
neural stem cells.58 Some companies have closed (REF JSRT-16-
NWS-125), others made little progress, while Neural stem Inc., has 
remained viable. However as not NSCs are equal is evident from 
various outcomes of the transplantations. At least three adverse 
reaction cases have been reported to date.59–61 In contrast cells from 
Stem cells Inc, Neural stem Inc and in an Italian study have been found 
to be safe.42,58,62 The difference may be attributed to quality of cells. 
With unregulated clinical use rampant all over the World,58,63–66 the 
research scientists need to heed the advice given by Prof. Knoepfler.67

Among the non-neural stem cells from which NSCs have been 
derived, AMP have exhibited the best neural differentiation potential.68 
Mesenchymal origin neural stem cells (mNSCs) and AMP derived 
NSCs (AM-NSCs) differentiated, expressed some neural markers, 

and were associated with cognitive benefits early after transplantation, 
post-TBI. However, AM-NSCs did not survive in the brain injury 
site 1 month after transplantation.69 Few reports have demonstrated 
integration of such cells into host tissues, thus suggesting this cell type 
to be a poor candidate for cell replacement.70–73 

A recent study with athymic rat TBI and hNSCs ~38% of the 
transplanted cells expressed NeuN.74 The duration of differentiation of 
hNSCs into NeuN positive cells is consistent with a published report 
that showed ~6-8 weeks were sufficient to induce transplant derived 
neurogenesis.1,75 

Transplantation of viable fetal neural progenitor cells (as early as 
24h post TBI) attenuated host neuronal degeneration (as assessed on 
day 6 post transplantation), also guided host microglia/macrophages 
towards an anti-inflammation phenotype indicating that a potentially 
beneficial effect of progenitor cell transplantation on adjacent host 
cells.30,76–78 

In other TBI and stroke models, cells have been delivered via 
intravenous (IV), intra-arterial carotid (IAC) or intraparenchymal (IP) 
injections. However, IV administration causes loss of the majority 
(~95%) of the cells during lung passage,55,79–81 whereas IAC injection 
carries the risk of causing embolic brain infarction and fails to 
deliver sufficient cells across the vascular wall barrier to the brain 
parenchyma, which is the major barrier for putative clinical use of 
this route. Engraftment after IAC injection is also dependent on cell 
type and adhesion molecule expression. IAC has been developed with 
bone marrow MSCs into a clinical trial for stroke.82,83 However, in all 
TBI studies exploring human cell therapies with neural or non-neural 
origin hNSCs/progenitors no engraftment has yet been detected with 
either IV or IAC.84,85 Direct transplantation of hNSCs to replace 
damaged neural networks may be a viable approach in the treatment 
of severe TBI. According to “The International Society for Stem 
Cell Research and Center for Biologics Evaluation and Research/
Office of Cellular, Tissue and Gene Therapies” 54 FDA guidelines, 
translation of cell transplantation approach in TBI requires evidence 
supporting: (1) lack of hNSCs tumorigenecity in TBI models, (2) cell 
dose dependence of behavior alterations in TBI, (3) best site and time 
for transplantation after TBI, and lastly (4) to establish feasibility, 
and scalability of the approach to both normal and TBI animals with 
longer gyrencephalic brains, such as pig or primate.53,54,86 

Conclusion
In conclusion albeit the NSC holds great promise the final two 

steps described above hold key to application in the clinic, To help 
with this The International Society for Stem Cell Research (ISSCR)’ 
has presented its 2016 Guidelines for Stem Cell Research and 
Clinical Translation. The 2016 guidelines reflect the revision and 
extension of two past sets of guidelines and demand rigor, oversight, 
and transparency in all aspects of practice, providing confidence 
to practitioners and public alike that stem cell science can proceed 
efficiently and remain responsive to public and patient interests.87–89 
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