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multipotent stromal cell differentiation

Abstract

The signals that trigger replacement of tissue by resident stem cells are unknown.
Inductive factors can induce differentiation in vitro, and these no doubt play some role
in vivo. However, in the presence of injury, the initiating event that precedes definitive
differentiation is open to speculation. Here in, we propose that it is the disruption
of tissue vitality that is key to this stem cell recruitment. Our foundational model
has the disruption of the blood supply leading to mesenchymal stem cell/multipotent
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stromal cell (MSC) starvation, with glucose being the limiting nutrient. This triggers a

stalled autophagy to recommence, allowing for eventual differentiation. Interestingly
a prolonged anoxic phase may augment this tissue replacement. This model presents
obvious implications for strategies aimed at intrinsic wound repair and therapeutic

tissue regeneration.
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Introduction

Stem cells are considered key element in tissue replacement
and regeneration after wounding, and in the same vein of thought,
as cellular therapy for missing tissue and organs. While evidence is
strong that endogenous MSCs do contribute to normal repair,' their
therapeutic implementation has been slowed by a number of issues.
A key issue is the rapid destruction of the transplanted cells, but
even as approaches are being developed to overcome this barrier,’® a
fundamental gap lies in the signals that trigger differentiation of such
cells. For both endogenous and implanted stem cells, it is expected
that the host environment would provide not only the guidance for
the phenotypic outcome of cell differentiation but also the signals to
differentiate. It is the latter, and the crucial impetus to regeneration
that we will address in this opinion piece.

Somatic stem cells are recruited into tissue replacement after tissue
loss and/or injury. In this situation, the normal homeostatic supports
have been disrupted. The wounded tissue and its surrounding area
are now characterized as a hostile microenvironment challenged both
by death and inflammation signals in response to damage associated
molecular pattern molecules (DAMPs)’ and lack of nutrient
support.'®!! The MSC must survive the acute challenge of the various
death signals, both cytokines and toxic metabolites such as reactive
oxygen species (ROS)!*'* to face an increasingly nutrient depleted
environment over the longer term. One obvious protective mechanism
would be for the cells to undergo a quiescent dormancy, minimizing
metabolic requirement and downregulating intracellular signaling
mechanisms. However, this would necessitate a subsequent trigger for
differentiation. We propose that it is this hostile environment in itself,
particularly the nutrient starvation, that serves to recruit the stem cells
toward differentiation and subsequent tissue replacement.

MSC contain numerous autophagosomes'>!¢ that are in a state
of arrested autophagy.'” The vesicles contain mitochondria, the
only intracellular organelle other than the nucleus that contains the
three key building blocks for cell replication - amino acids, lipids
and nucleic acids. Ex vivo induction of differentiation activates the
autophagic cascade leading to clearance of the autophagosomes and
the decreasing the number of mitochondria.!”'® Regulation of this
autophagy is complex as acceleration or delay alters the efficiency of
differentiation ex vivo.'”" Thus, the question arises as to the driver of
this autophagy.

Autophagy is the most dramatic cell survival mechanism in the
face of starvation. The self-catabolism provides nutrients until an
external source can be found. The disruption of the vascular supply
to wounded tissue establishes such an extreme and multi-day nutrient
depletion situation if there is a limiting nutrient. The finding that
MSC are glycolytic similar to embryonic stem cells,”*?! led to the
realization that glucose would be rapidly depleted ex vivo and likely
in vivo as well once the blood supply was curtailed. This would trigger
the autophagy but in a slightly delayed time scale, consistent with that
noted during forced induction.

A second nutrient that would rapidly fall would be oxygen,
particularly for allogeneic cell transplants out of culture expansions.
As the MSC are overwhelmingly glycolytic, the oxygen consumption
of these is minimal until after differentiation shifts them towards
oxidative phosphorylation;* thus, a drop in oxygen would not be
likely to compromise survival. This hypoxia could both promote limit
as well as enhance differentiation efficiency. It has been reported
that hypoxia increases the survival of stem cells while retaining their
‘stemness’;*? this would render the MSC less likely to differentiate.
On the other hand, MSC accelerate their phenotypic differentiation
under hypoxic conditions ex vivo® as we have reported for osteogenic
MSC differentiation.'” Interestingly, hypoxia does not appear to affect
the autophagic activities in these stem cells,'” suggesting that the
limited oxygen would not be a triggering event but merely augment
both the initial induction trigger and the phenotypic signals.
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That glucose could be the key rate-limiting trigger of recruitment
of MSC into the differentiation cascade would have implications for
diabetic wound healing. In addition to direct cellular damage done by
hyperglycemia, the increased glucose levels also dramatically reduce
the number autophagosomes in MSC. We predict that this would
limit the ability of the MSC to respond to the starvation trigger, and
be reflected in fewer MSC clones as identified after induction, as is
commonly noted in specimens from diabetic patients. Additionally, the
arteriolosclerosis of long-standing diabetes would subject tissue MSC
to a chronic hypoxia further blunting any changes upon wounding.
Combined, this would lead to limited regenerative potential, as is the
hallmark of wounds in persons with diabetes.

Conclusion

In summary, these considerations ultimately direct us to propose a
model in which the initial insult that requires stem cell contribution to
replace damage and lost tissue is the also in itself the trigger to direct
the stem cells to exit their stem niche and begin the differentiation
process. This is elegantly simple in that a secondary signal or event
is not necessary. It is fully appreciated that at present there is little
experimental data to support or refute such a model; what information
exists comes from contrived in vitro or ex vivo investigations, with all
the obvious caveats. The in vivo information that leads to this model
is extrapolated from observations. For this reason, the model remains
at the level of hypothesis.

This model is a useful construct despite its lack of firm supportive
data, in that it directs testable challenges. For instance, if a tissue
is injured without disruption of the microvasculature, and thus not
experience nutrient (glucose) deprivation or hypoxia, we would not
expect stem cells to be recruited as replacement tissue (as a note, this
is distinct from re-establishing normoxia or hyperoxia after the wound
hypoxic challenge). Alternatively, an acute or local hyperglycemia
would be expected to lead more towards scarring rather than
replacement regeneration. This model being at least partially
validated would have implications for the delivery of exogenous
MSC for regenerative tissue replacement, in that the cells would need
to be introduced within the delivery time of nutrient deprivation for
recruitment into the tissue make-up rather than merely as a paracrine
factor factory, as is presently the situation. Thus, we propose this
model as much to stimulate investigations into a novel concept of
cellular starvation triggering stem cell recruitment and initiating the
differentiation process.
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