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Introduction
Meconium aspiration syndrome (MAS) is defined as the presence 

of respiratory distress in neonates born through meconium-stained 
amniotic fluid (MSAF) with typical lung radiologic findings.1 The 
incidence of MSAF is around 4–22% of all births and 3–12% of the 
babies born through MSAF develop MAS.2 The severity of respiratory 
failure varies, with one-third of newborns requiring mechanical 
ventilation, and mortality rates ranging from 5-12%.3

Pathophysiology of MAS is not well defined and comprises a 
complex and multifactorial process that includes airway obstruction, 
surfactant inhibition and inflammation.4 The inflammatory process 
found in MAS is one of the major mechanisms of lung injury involved 
in the pathophysiology of the disease and has been well documented 
in a number of in vivo and in vitro studies.4,5 Meconium contains 
high levels of proinflammatory cytokines and chemokine, such as 
interleukins (IL-1, IL-6, IL-8) and tumor necrosis factor, which may 
be directly involved in the pathogenesis of pneumonitis.5 Moreover, 
it has been established that intra-alveolar meconium deposition may 
stimulate neutrophil chemotaxis via IL-8 production. This process 
is postulated to occur through meconium’s oxidative actions or its 
inherent phospholipase A2 activity, which facilitates the generation 
of eicosanoids. A significant finding is that the increase in pulmonary 
tissue IL-8 levels is directly associated with the subsequent worsening 
of respiratory function.6,7

Clinical studies have shown that the surfactant replacement 
in MAS decreases the severity of the disease,4,8–11 however, little 

is known about the role of exogenous surfactant in the control of 
meconium-induced lung inflammation.12–14

We hypothesize that bovine surfactant administration will 
ameliorate the inflammatory response by reducing pulmonary IL-8 
levels in newborn rabbits with meconium aspiration syndrome. The 
specific objective was to determine and compare the lung tissue 
IL-8 concentrations between untreated and bovine surfactant-treated 
animals.

Material and methods
It is an experimental, randomized study using a well-known model 

of newborn rabbits with meconium aspiration syndrome.15,16 Figure 1 
demonstrates the design of the study.

Meconium was collected from healthy term human newborns, 
diluted in distilled water at a concentration of 25 mg/ml, followed by 
filtration to remove particles with diameters larger than 3 mm, in order 
to rule out airway’s obstruction. Subsequently, the meconium was 
lyophilized and, prior to endotracheal administration to the animals, 
diluted in saline solution at a concentration of 65 mg/ml according 
to techniques described in literature and already applied in previous 
studies.16

The surfactant used in the study was Beractante (Survanta™). 
The commercial product is obtained from bovine lung macerate, it 
is composed of phospholipids, neutral lipids, fatty acids and proteins 
(SP-B e SP-C) and available in the concentration of 25 mg of lipids/
ml.17 
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Abstract

Background: Interleukin-8 (IL-8) production, as part of the inflammatory response, plays 
an important role in lung injury associated with meconium aspiration syndrome (MAS). 
Although surfactant therapy improves pulmonary function, its effects on pulmonary 
inflammation remain controversial.

Objective: To evaluate the effect of surfactant (beractant) administration on IL-8 levels in 
a neonatal rabbit model of MAS.

Methods: Anesthetized newborn rabbits underwent tracheotomy, received intratracheal 
human meconium (6 mL/kg; 65 mg/mL), and were mechanically ventilated using a 
pneumotachograph-ventilator system. After 5 minutes of ventilation, animals were randomly 
assigned to three groups: untreated MAS (MEC), MAS treated with bovine surfactant 
(SURF; 100 mg/kg), and control. After 25 minutes of ventilation, animals were euthanized, 
and lung tissue was harvested for analysis. IL-8 concentrations were determined in lung 
tissue homogenates using an enzyme-linked immunosorbent assay (ELISA; UCNLIFE). 
Statistical analysis was performed using one-way ANOVA, with significance set at P < 0.05.

Results: Twenty-five newborn rabbits were studied (MEC, n = 10; SURF, n = 8; control, 
n = 7). No significant differences were observed among groups regarding body weight 
or tidal volume during ventilation. IL-8 concentrations (pg/mL.kg) in lung homogenates 
were significantly lower in the SURF group compared with the MEC group and were 
comparable to control values: 386.3 ± 102.2* (SURF), 712.9 ± 379.8 (MEC), and 355.8 ± 
129.7 (control); *P = 0.006 for SURF vs. MEC.

Conclusion: In this experimental model of MAS, surfactant replacement therapy attenuated 
pulmonary inflammation, as evidenced by reduced IL-8 levels in lung tissue.
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Figure 1 Study design. 

Min, minutes; MV, mechanical ventilation; SURF, surfactant group; MEC, 
meconium group; IL-8, interleukin-8.

Experimental animal model

Birth and ventilation procedure: Term newborn rabbits were 
obtained through cesarean at 30 days of pregnancy, from pregnant 
rabbits belonging to the Botucatu genetic group18 and provided by the 
Rabbit Production Area of the Veterinary Medicine and Animal Science 
School, UNESP – Botucatu. Animals with pneumothorax at any time 
during the study and animals that did not present a 30% reduction in 
lung compliance (compared to normal complacency values for term 
newborn rabbits) were excluded. According to previous studies, the 
reduction in lung compliance values denotes the inactivation of the 
surfactant by meconium and satisfy the criteria for definition of MAS 
experimental model.19 C-section was performed after sedation of the 
rabbits with intramuscular application of ketamine and acepromazine 
solution (10mg/kg and 0.1 mg/kg), followed by spinal anesthesia with 
2 ml of 1:1 (vol:vol) solution of lidocaine at 2% and bipuvacaine at 
0.5%. 

After birth, each animal was dried, weighed and anesthetized with 
ketamine-acepromazine intraperitoneal administration (10 mg/kg – 
0.1 mg/kg). A tracheostomy was performed using a metallic cannula 
(1 mm inner diameter). Before initiating mechanical ventilation, 
meconium (65 mg/mL) was administered endotracheally at a dosage 
of 6 mL/kg, followed by 10 seconds of manual ventilation with a self-
inflating bag. The animals were given pancuronium via intraperitoneal 
(20 µg), to prevent spontaneous breathing. Mechanical ventilation 
was started (INTER 7- Plus - Intermed-São Paulo, Brasil), using 
a respiratory rate (RR) of 60 cycles/min; inspired oxygen fraction 
(FiO2) of 1.0; peak inspiratory pressure (PIP) required to achieve 8 
ml/kg tidal volume and positive end-expiratory pressure (PEEP) of 3 
cmH2O, in controlled ventilation mode, for a 25 minutes period. 

Randomization: Each litter contributed animals to all three 
experimental groups, and neonatal rabbits were randomly assigned to 
each group. If there were any reasons for exclusion, another animal 
from the previously allotted group was picked to replace the excluded 
animal. Animals were divided in 3 study groups according to the type 

of treatment administered: MEC group – animals with MAS, without 
treatment; SURF group: animals with MAS treated with surfactant 
-100 mg/kg and Control group – animals with no disease and no 
treatment.

Ventilation and collection of pulmonary mechanics data: During 
ventilation, data of tidal volume (TV), dynamic compliance (DC) 
and ventilatory pressure (VP) were collected within 5, 10, 15, 20 
and 25 minutes by means of a pneumotacograph (model 3700 series, 
Hans Rudolph Inc, Kansas City, MO) attached to a signal amplifier 
transmitting data in real time to a computerized data acquisition 
system (LabView 5.1, National Instruments), specifically developed 
for this purpose. Ventilatory pressure was the difference between PIP 
and PEEP, and the dynamic compliance was calculated by dividing 
the tidal volume (ml/kg) by VP (cm H2O). The PIP adjustment was 
made as necessary, to keep the 8ml/kg target TV, up to 30 seconds 
prior to each measurement.	

Euthanasia of the animals and handling of the lungs: After 25 
minutes of ventilation, the animals were deeply sedated with sodium 
pentobarbital (25 mg/kg) via intraperitoneal, then carrying out the 
euthanasia by intrathecal injection of 0.5 ml of 2% lidocaine. The 
lungs were removed by dissection and then macerated for the IL-8 
dosage in the homogenate. 

IL-8 dosage: The IL-8 dosages were performed in pulmonary tissue 
homogenate samples of animals from the three evaluated groups 
using the enzyme-linked immunosorbent assay (ELISA) method, set 
for rabbits from Kingfisher Biotech, Inc. (St. Paul, MN, USA). The 
ratio of lung tissue per mL of PBS (Phosphate Buffer Saline) was 10 
mg of lung tissue/ 0.25 mL of PBS. The test principle applied was 
sandwich enzyme immunoassay, which is performed in the following 
steps: the microtiter plate is coated with an antibody specific to IL-8 
and standards or samples are added. After incubation period, the 
rabbit IL-8 detection antibody (biotin-conjugated antibody specific 
to IL-8) is added, followed by the addition of Avidin conjugated to 
Horseradish Peroxidase (HRP) to each microplate well. After addition 
of tetrametilbenzidina (TMB) substrate solution, those wells that 
contain IL-8 exhibit a change in color. At this point the enzyme-
substrate reaction is stopped by the addition of 0.18M of sulphuric 
acid solution and the color change is measured spectrophotometrically 
at a wavelength of 450 nm ± 10 nm. The concentration of IL-8 in the 
samples is then determined by comparing the optical density (OD) of 
the samples to the standard curve. The range of standard curve was 5 
to 320 pg/mL, the interassay and intra-assay coefficients of variation 
were 10% and 7%, respectively. 

Statistical analysis: The minimum calculated sample size was 6 
animals in each group, based on a difference between the means of 
the groups in the dimension of 0.17 ml/cmH2O.kg (for pulmonary 
compliance), with a standard deviation considered the same for all 
the groups and ranging around 0.07, with a test power of 0.80 and 
a significance level of 0.05. The pulmonary compliance values 
considered were obtained from literature data.15,16,21

The comparison of means between groups was made using “ONE-
WAY ANOVA”. “Student-Newman-Keuls” was used as discriminatory 
post-test, assuming a level of significance of 5%. For data not showing 
the normal distribution and same variance prerequisites, the “Kruskal-
Wallis One Way Variance Analysis in Ranks” was used as a test option 
for non-parametric data. The proportions were compared using the 
chi-square test.

Ethical considerations: The study was approved by the Ethics 
Committee on Animal Experimentation of Botucatu Medical School. 
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The euthanasia of the animals was performed under proper sedation 
and specific painless procedures were used, with no suffering for the 
animals, respecting the standards and recommendations in effect at 
the institution and recognized internationally.20

Results
Out of the 29 animals included in the study, two were excluded due 

to pneumothorax and two because they did not meet the criteria for the 
MAS model. The birth weight of the rabbit pups ranged from 45 to 53 
g, with no statistically significant differences between groups.

Dynamic lung compliance was monitored throughout the 
25-minute period of mechanical ventilation to confirm reproduction 
of the meconium aspiration syndrome model and to assess the effect 
of surfactant treatment. Figure 2 shows pulmonary mechanics in the 
three study groups during ventilation. Animals exposed to meconium 
had lower dynamic lung compliance than controls. After surfactant 
administration (SURF group), dynamic lung compliance increased 
and remained stable until the end of the ventilation period. Tidal 
volume remained stable throughout ventilation (8.0–8.9 mL/kg), with 
no significant differences between groups.

Figure 2 Dynamic lung compliance values during ventilation period (Mean 
± se).

IL-8 concentrations in homogenized lung tissue (pg/mL·kg) 
were 355.8 ± 129.7 in the Control group, 386.3 ± 102.2 in the SURF 
group, and 712.9 ± 379.8 in the MEC group. Animals with meconium 
aspiration treated with surfactant had lower IL-8 levels than untreated 
animals, with values comparable to those observed in the Control 
group (Figure 3). 

Following the administration of meconium via tracheostomy, 
animals in the MEC and SURF groups showed a reduction in dynamic 
lung compliance (DLC) greater than 30% compared to the control 
group, which confirms the establishment of the proposed experimental 
model. It was observed that after five minutes of ventilation, following 
surfactant administration, there was a significant increase in DLC in 
SURF group.

SURF: Group of animals with meconium aspiration, treated 
with bovine surfactant (100mg/kg); MEC: Group of animals with 
meconium aspiration, without treatment; min: minutes; se: standard 
error.

Figure 3 Interleukin 8 (IL-8) values in lung tissue of the study groups (mean 
± sd).

SURF: Group of animals with meconium aspiration treated with bovine 
surfactant (100mg/kg); MEC: Group of animals with meconium aspiration 
without treatment; IL-8, interleukin 8; sd, standard deviation.

The IL-8 levels in the lung tissue of animals in the group that 
received surfactant were significantly lower than in the MEC group 
(without treatment), with values ​​similar to those observed in the 
control group.

Discussion
Meconium aspiration syndrome may cause severe respiratory 

failure and is associated to high mortality rates, posing a challenge 
to neonatal care.21,22 Within the complex and multifactorial 
pathophysiology of meconium aspiration syndrome (MAS), inhibition 
of pulmonary surfactant activity represents a key mechanism, mediated 
by cholesterol molecules and bile acids present in meconium. In 
addition, the intense intra-alveolar inflammatory response triggered 
by meconium plays a central role in disease progression. Elevated 
levels of IL-8, along with other pro-inflammatory cytokines and 
mediators, have been consistently demonstrated in experimental and 
clinical studies.23–25

The results of this study confirmed that surfactant administration 
reverses the observed effects on dynamic lung compliance in animals 
with meconium aspiration. These results are comparable to previous 
studies in which surfactant administration at doses of 100 or 200 mg/
kg improved lung compliance and reduced lung tissue damage, with 
less atelectasis and hyperinflation.16,26 

Our results have also shown that newborn rabbits with meconium 
aspiration had IL-8 values twice as high in pulmonary tissue when 
compared to the animals without the disease. The IL-8 values ​​observed 
were similar to those found in previous studies, performed on samples 
obtained by bronchoalveolar lavage in rabbits with MAS.27,28 In our 
study, animals with MAS treated with exogenous surfactant showed 
significantly lower levels of IL-8 compared to untreated animals, 
achieving similar values to the ones found in the control group. This 
effect may be explained by the modulatory role of surfactant on 
the intra-alveolar inflammatory response, leading to reduced IL-8 
production.29,30 In addition, we speculate that surfactant replacement, 
by restoring lung mechanics through a reduction in alveolar surface 
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tension, permitted the use of lower inspiratory pressures, thereby 
decreasing the risk of ventilator-induced lung injury. This, in turn, may 
have contributed to attenuated local inflammation and, consequently, 
lower IL-8 levels.

Studies with experimental models of MAS show that anti-
inflammatory (glucocorticoids) and antioxidant (N-acetylcysteine) 
agents can modulate pulmonary inflammatory reaction by the 
reduction of the edema, the influx of neutrophils and a lower production 
of oxidative stress markers.13,31,32 It has also been demonstrated 
that the administration of inhibitors of cicloxigenase-2, an enzyme 
involved in the pathogenesis of MAS, also decreases the production 
of inflammation markers, like IL-8, with less pulmonary tissue injury 
in rabbits with MAS.28 

This study has several limitations. The relatively short ventilation 
period (25 min) may have been insufficient to determine whether 
the effects of surfactant administration are sustained over time. 
However, this constraint is inherent to the experimental model, as 
ventilation periods exceeding 25–30 minutes are associated with 
high mortality, rendering longer protocols unfeasible. Nevertheless, 
the model remains valuable, as it is well established that early lung 
injury occurring within the first minutes of life is closely associated 
with an intense local inflammatory response, characterized by the 
production of inflammatory mediators and free radicals.33,34Another 
issue to consider is that the reduced IL-8 levels observed in the treated 
group could theoretically reflect either the absence of disease or the 
development of a less severe inflammatory process compared with the 
untreated MEC group. However, pulmonary mechanics assessment, 
based on dynamic lung compliance measurements, supports the 
conclusion that alveolar injury induced by meconium aspiration 
occurred homogeneously in both the MAS and SURF groups. 
Furthermore, in both groups, only animals exhibiting a reduction in 
lung compliance greater than 30% of values considered normal for 
the species were included, in accordance with established criteria for 
this experimental model.19

We concluded that induced MAS in newborn rabbits increased 
IL-8 lung tissue production and that the surfactant replacement 
therapy decreased the local inflammatory response, evaluated by the 
lower IL-8 values in the pulmonary tissue macerate. In the future, new 
studies can be conducted to evaluate the effects of surfactants enriched 
with hydrophilic proteins or combined with anti-inflammatory agents 
on the alveolar inflammatory response in meconium aspiration 
syndrome.
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