

Case Report

Spontaneous rupture of a left subclavian artery pseudoaneurysm in a child

Abstract

A 14-year-old boy with history of generalized joint hyper mobility and ongoing genetics work-up for connective tissue disorder presented to our hospital for one day of acute left-sided chest pain and shortness of breath after feeling a "pop" in his chest while trying to put on a jacket. CT chest and subsequent angiography demonstrated a large left hemothorax with a psuedoaneurysm of the left subclavian artery at the base of the vertebral artery, which was repaired with urgent successful placement.

Keywords: pseudoaneurysm, ehlers-danlos syndrome, pediatric interventional cardiology

Volume 9 Issue 3 - 2019

Sannya V Hede, Daniel S Levi

Division of Pediatric Cardiology, Mattel Children's Hospital,

Correspondence: Sannya V Hede, MD, 200 Medical Plaza, Suite 330, Los Angeles, CA, 90024, Tel 310-267-7667, Fax 310-825-9524, Email shede@mednet.ucla.edu

Received: April 02, 2019 | Published: May 09, 2019

Case presentation

A 14-year-old boy with history of generalized joint hypermobility and ongoing genetics work-up for connective tissue disorder presented to our hospital for one day of acute left-sided chest pain and shortness of breath after feeling a "pop" in his chest while trying to put on a jacket. He was tachycardic and had absent breath sounds in the left lobe. A chest X-ray showed a large left pleural effusion and a subsequent CT chest demonstrated a large left hemothorax with a psuedoaneurysm of the left subclavian artery (LSCA) at the base of the vertebral artery. Angiography confirmed the presence of a LSCA pseudoaneurysm that measured 15 by 8mm (Figure 1A

video/Panel A). A 5mm by 3 cm Cordis OptaPro balloon was then placed in the LSCA just distal to the vertebral artery and proximal angiogram demonstrating that the bleed could be occluded without obstructing flow to the vertebral artery. Subsequently, the patient underwent successful placement of a 6 mm Gore VBX stent (Figure 1B video/Panel B) via positioning with an Amplatz Extra Stiff wire in the distal LSCA without obstruction to flow to the vertebral artery. At follow-up, the patient is doing well and was recently confirmed to have *PLOD1*-related kyphoscoliotic Ehlers-Danlos syndrome (1902+1G>T variant). Causes of subclavian artery pseudoaneurysms include connective-tissue disorders, congenital defects and infections.

Figure IA & IBA chest X-ray showed a large left pleural effusion and a subsequent CT chest demonstrated a large left hemothorax with a psuedoaneurysm of the left subclavian artery (LSCA) at the base of the vertebral artery.

Discussion

Ehlers-Danlos Syndrome (EDS) is a heterogeneous group of disorders with overlapping clinical characteristics including skin hyper extensibility, joint hypermobility and vascular fragility. While the original classification of EDS comprised of six main EDS subtypes, after the introduction of next-generation sequencing techniques, the list has since expanded to include non-collagenous extracellular matrix (ECM) types and now comprises 13 distinct clinical subtypes in 19 different genes.1 Depending on the EDS subtype and the underlying genetic defect, their clinical consequences, including vascular complications can range from mild to severely debilitating and even life-threatening. PLOD1-related kyphoscoliotic Ehlers-Danlos syndrome (kEDS) is an autosomal recessive subtype caused by a defect in the protein, lysylhydroxylase 1 (LH1), encoded by the PLOD1 gene, which plays an essential role in the formation of intra- and intermolecular collagen crosslink. To date, 83 patients from 73 families with confirmed kEDS PLOD1 have been reported. In addition to the hallmark features of EDS, patients with this subtype have an increased risk for rupture of medium-sized arteries (up to 20% in a recent systematic review), the majority of which have been severe and potentially life-threatening.2 To date, these include six cases of antenatal or neonatal intracerebral hemorrhage and a series of case reports involving arterial dissections or aneurysms, especially in teenagers and young adults.3-8 Possible association between LH1 deficiency and increased vascular fragility has been studied in a Plod1-- mouse model mice where about 15% of the knockout mice died because of aortic rupture thought to be related to degenerated aortic smooth muscles and abnormal collagen fibrils in the aortic wall.9 Our case is the first to describe a subclavian pseudoaneurysm in the kEDS subtype and highlights both the dramatic presentation of EDS as a massive hemothorax from a ruptured LSCA aneurysm and subsequent importance of regular cardiovascular assessment and imaging in patients with both vascular and non-vascular forms of EDS. Future research focusing on guidelines for specific long-term management of vascular complications in EDS remains ongoing.

Acknowledgments

None.

Conflicts of interest

The authors do not have any conflicts of interest.

References

- Malfait F. Vascular aspects of the Ehlers-Danlos Syndromes. Matrix Biol. 2018;380–395
- D'hondt S, Van Damme T, Malfait F. Vascular phenotypes in nonvascular subtypes of the Ehlers-Danlos syndrome: a systematic review. *Genet Med*. 2018;20(6):562–573.
- Rohrbach M, Vandersteen A, Yiş U, et al. Phenotypicvariability of the kyphoscoliotic type of Ehlers-Danlossyndrome (EDS VIA): clinical, molecular and biochemical delineation. *Orphanet J Rare Dis*. 2011; 23:6:46
- Giunta C, Randolph A, Steinmann B. Mutation analysis of the PLOD1 gene: an efficient multistep approach to the molecular diagnosis of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA). *Mol Genet Metab*. 2005;86(1-2):269–276.
- Tosun A, Kurtgoz S, Dursun S, et al. A case of Ehlers-Danlos syndrome type VIA with a novel PLOD1 gene mutation. *Pediatr Neurol*. 2014;51(4):566–569.
- Wenstrup RJ, Murad S, Pinnell SR. Ehlers-Danlossyndrome type VI: clinical manifestations of collagen lysylhydroxylase deficiency. *J Pediatr*. 1989;115(3):405–409.
- Yeowell HN, Walker LC, Murad S, et al. commonduplication in the lysyl hydroxylase gene of patients with EhlersDanlos syndrome type VI results in preferential stimulation oflysyl hydroxylase activity and mRNA by hydralazine. *Arch Biochem Biophys*. 1997;347(1):126–131.
- Yeowell HN, Walker LC, Farmer B, et al. Mutational analysis of the lysyl hydroxylase 1 gene (PLOD) insix unrelated patients with Ehlers-Danlos syndrome type VI:prenatal exclusion of this disorder in one family. *Hum Mutat.* 2000;16(1):90–90.
- Takalouma K. Tissue-specific changes in the hydroxylysine content and cross-links of collagen and alterations in fibril morphology in lysyl hydroxylase 1 knock-out mice. *J Bio Chem.* 2007;282(9):6588–6596.