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Immunogenic bacteria
Minimal bacteria growth on small intestinal mucosa is associated 

with prompt absorption of food, as happens during insulin 
sensitivity.1–68 Any meal by meal excess intake over expenditure 
(insulin resistance) fosters microflora growth and reversible immune 
deficiency (RID: subclinical inflammation, overall inflammatory 
state, or pro-inflammatory state).1,2,66-71 Overweight is the cumulative 
result of meal by meal positive balance for a period of time. Weight 
increase and fattening produce an increase in insulin resistance and 
RID. A weight stable is poorly effective on subclinical inflammation, 
and weight decreases diminish the overall inflammation. In the small 
intestine, unabsorbed food becomes harmful to mucosa and all the 
body for the existence of bacteria in the intestinal lumen and the 
possibility of an active proliferation inside the lumen until food is 
available.68. On the contrary, rearing experimental animals without 
bacteria reduced to 10% cellular infiltration and immunoglobulin 
production in small intestine mucosa.70 Tropical enteropathy exhibits 
a denser infiltrate than normal mucosa in dependence on absorption 
slowdown in a warm and humid climate.

The conception of intestinal saprophytes was rather naïve. 
Bacteria grow in the colon and everywhere in dependence of water 
and available nutrients and temperature. Water is freely available on 
mucosal surfaces, and nutrients (carbohydrates, proteins) depend on 
eating and more precisely on current energy balance. We compared 
the xylose absorption rate in two groups of experimental animals, 
one at the environmental temperature of 30 °C and the other at 6 °C 
environmental temperature.59 At high environmental temperature, 
the absorption rate halved in comparison to animals kept at low 
temperature. We obtained similar results in humans.60 A slowdown 
of metabolic and absorption rates explain unexpected microflora 
growth.59–64 Bacteria in the colon double every day, very slowly 
in comparison with growth in the small intestine, where bacteria 
can double every 15 minutes.68 Bacteria obtain little energy from 
non-absorbable, indigestible fibers in absence of oxygen. All meat, 
bread and every good meal component do not arrive to the colon. 
These highly energetic foods would promote an explosive growth. 
The rumen is similar to the human colon in hosting bacteria in an 
ambient that has poor nutrients and is absolutely devoid of oxygen. 
Energy rich nutrients let develop one-two liters of carbodioxid per 
minute in the rumen. The small intestine is also anaerobic, and oxygen 

absence increases toward the end of the intestine. 60% of bacteria 
do not stimulate any immune response.69 10%-15% evoke a response 
by IgG lymphocytes and neutrophils that are destructive on invading 
bacteria, mucosa and overall in the body by subclinical inflammation. 
Minimal bacteria growth requires minimal persistence of nutrients 
in the small intestine lumen like on teeth. This depends on intake 
amount and rhythm. Amounts and intervals can be externally decided 
by doctors, who apply standard international averages from healthy 
people. Any decision about eating start, the amount and any stop may 
better be taken by the subject’s estimation of personal cues on the 
personal energy balance. The suspension of food administration to 
a healthy baby with functional bowel disorders provoked crying for 
hunger (Initial Hunger, IH) within 48 hours of time.39,40 This cue was 
subjective although being more certain than any laboratory measure. 
As pediatricians, we provisionally assumed that crying for hunger 
corresponded to initial emptiness of stomach and small intestine 
and to the time of most active absorption.39,40 The administration 
amount might correspond to expenditure in the interval between 
subsequent similar meal demands. This correspondence is exact in 
the long (monthly) period. Insulin resistance may sometimes arise 
independently from eating, like during psychological stress and fever. 
A transient break in eating is useful in these events that are associated 
with insulin resistance. Although the energy expenditure increases 
and body energy balance is negative during fever, preprandial BG 
remains high, and the balance in blood is positive for energy influx 
from fat stores.71–73 We consider this divergence as acceptable and 
normal. Hormones that allow the body to meet stress such as cortisol, 
cortisol releasing factor, and serotonin together raise blood glucose 
concentration, activate mast cells, monocytes, and macrophages, 
increase intestinal permeability, and contribute to subclinical 
inflammation-essentially the same effects as eating in the absence 
of IH. Suspension of meals for one three days is accepted. Yet the 
balance problem becomes difficult when a stressful condition persists 
for weeks.1,2.

Positive energy imbalance and microflora 
overgrowth

The maintenance of inflammation is much more pronounced in 
the mucosa of the small intestine than in that of the colon. The more 
intense conflict against the luminal content may depend on the surface 
area that has been estimated as high as 10 000 square meters in the 
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Abstract

At meals, people aim to maintain their usual energy level and balance in blood and all 
tissues. People have subjectively formed this aim through months and years poorly 
consciously, i.e., outside any comparison with other people, other times or feeding 
conditions. The aim can be assessed as the weekly mean BG, ± 3.8 mg/dL (confidence 
interval) and may be evaluated in the overall stratification. After 2-48 hours of meal 
suspension, the aim spontaneously arises as Initial Hunger (IH). Recognition of three IH 
arousals per day produces an even energy balance and eliminates any conditioned intake at 
20% lower energy intake, 20% lower Mean BG, 20% lower RMR and 30% lower insulin 
resistance than automatic, conditioned feeding.
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small intestine. The colon surface is devoid of villi and microvilli and 
may be about one square meter. One-two percent of big molecules 
in the lumen cross the small intestine epithelium, and exercises an 
immune stimulation inside the mucosa. For unknown reasons, bacteria 
exert immune stimulation more than food.70 We insist that bacteria 
multiply in dependence on nutrients availability, mainly on energy 
and iron. The host gives ammonium for bacterial proteins. Minimal 
bacteria growth on the mucosa is a necessary step to achieve health, 
like on the periodontal mucosa. During positive energy imbalance, the 
small intestinal absorption slows down; intestinal microflora grows 
and produces an increase in the inflammatory infiltrate in the small 
intestine and reversible functional derangements.65–70 In experimental 
animals, we have described an increase of inflammatory cells in the 
mucosa after administration of broth culture containing Escherichia 
coli.75–77 This bacterium was not a pathogen, but elicited an 
inflammatory response, as an immunogenic component of intestinal 
microflora. We showed an increase in bacteria number in biopsies of 
children during absorption and a decrease in bacteria number after 
the last meal.70–72 Subjects with irritable bowel syndrome (in infancy, 
chronic nonspecific diarrhea) actually show an increase in mucosal 
inflammatory cells.78–84 Suppression and a decrease in intake cured 
these diarrheic toddlers by subtracting nutrients to mucosal microflora. 
Decrease in insulin resistance and in overall inflammation might have 
influenced the recovery.

Immune involvement
In our laboratory hypothesis, each meal carries on a battle. Every 

meal renews or reignites the never ending conflict between bacteria 
growing on mucosa and immune reaction. Sometimes the conflict 
is acute, symptomatic; more often damages all body although 
progressing without any awareness (overall subclinical inflammation). 
Bacteria double every 10-20 minutes in the small intestinal 
nutrients.60–64,78–96. The mucosa of the small intestine hosts half the 
body production of immune cells and sustains a permanent moderate 
local inflammation, consisting of IgA and phagocytic responses, 
“tolerant” inflammation.97–99 About one hundred commensal bacteria 
are immunogenic in the human intestine.69 An increase in this bacterial 
growth to about one billion per gram of mucosa provokes increase in 
production of lymphocyte and of IgG antibodies and reactions with 
mucosal damages.75–89 The local inflammation discharges antigens 
and activated monocytes in circulation, producing a subclinical 
inflammation throughout the body.1–25 This inflammation has received 
many names: overall inflammation, proinflammatory state and 
Reversible Immune Deficiency (RID).2 We preferred these two last 
names to emphasize the detrimental, immune involvement of the entire 
body from meal energy intakes that are unbalanced by correspondent 
high energy expenditure. This immune involvement increases and 
prolongs all localized inflammations and worsens general diseases.1–25 
The suppression of the immune stimulation of intestinal mucosa was 
the strategy for a new life, for recovery from infection, from immune 
illnesses and from malnutrition as well as from obesity and to prevent 
risks and deterioration for everybody. Short absorption times (two-
three hours) alternated with periods of emptiness may achieve this 
goal.

Overall subclinical inflammation
“Insulin resistance” is associated with a “pro-inflammatory state” or 

“subclinical inflammation”, and the association is supported by a huge 
amount of research.1–25,97–99 The findings of this association represent 
a high achievement in understanding human nutrition and health. The 
general acceptance of this association took unfortunately 80 years.22–-25. 
Persistent unbalanced energy intake and/or psychophysical stresses 

modify the activity of monocytes, macrophages and mast cells, and 
together alter the neuro-endocrine system.1–25. These disorders increase 
intestinal permeability.95 Bacterial biofilms may develop inside the 
alimentary canal and produce endotoxins that invade blood and all 
tissues. Immunogenic bacteria induce a huge biological pressure 
on human immune system and deep functional alterations. The 
invasion of body tissues by bacterial products and endotoxins sustains 
subclinical inflammation and causes the slow progression of many 
chronic diseases, like asthma and rheumatoid arthritis. Thus, body 
tissues develop a pro-inflammatory state (subclinical inflammation, a 
synonym) that is sterile, ineffective and dangerous for body tissues in 
the intestine and elsewhere.

Health as minimal immune stimulation
The antibiotic treatment of pneumonia and consequent recovery 

shows the potential harm of some of the 30-100 bacterial species 
that may spread from the alimentary canal and superimpose on a 
viral infection. An abundance of nutrients, slowdown of absorption 
and microflora overgrowth begin the causal chain between intake 
and subclinical inflammation, functional disorders, deterioration and 
risks. The nutrient abundance just coincides with insulin resistance 
and progression in fattening, two events that are associated even 
when appear alone. Also the absorption slowdown coincides with 
the condition of insulin resistance, although the evidence is poorer. 
In animal experiments, insulin infusion into portal vein increased 
intestinal absorption rate.80 After a similar intake, we found a decrease 
in the absorption rate in a warm environment in comparison with a 
cold environment in both animal and human experiments.59,60,72 The 
cold environment is associated with higher energy expenditure than 
the warm one.6. The increase in energy expenditure decreases insulin 
resistance.62–64 We may mention also the absorption slowdown that 
is well known and accepted during infection and inflammation.71 
We conclude that healthy nutrition, at least provisionally, coincides 
with insulin sensitivity, whereas slow absorption and subclinical 
inflammation (Reversible Immune Deficiency, RID) develop during 
an increase in insulin resistance. In our studies, disordered bacteria 
growth on intestinal mucosa and overall subclinical inflammation are 
due to a unifying pathogenic factor, insulin resistance.
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