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Morphopathological changes of dendrites in
experimental animals and in human nervous diseases

Abstract

The present review describes the pathological changes of shaft dendrites in
most central nervous diseases. We have illustrated most pathological changes
using cortical biopsies of patients with congenital hydrocephalus, severe and
complicated traumatic brain injuries, and brain tumors. Swollen and beaded
dendrites exhibit fragmentation of limiting plasma membrane, cytomembranes
and cytoskeletal structures. The swollen dendrites show vacuolization, dense
residual bodies, enlarged rough and smooth endoplasmic reticulum, edematous
clear and dark mitochondria. The multifactorial processes associated with brain
edema and brain ischemia, such as calcium overload, activation of calcium-
dependent proteolitic enzymes, protein aggregation, glutamate-induced
neurotoxicity, release of lysosomal enzymes, deficit of ATP, stress oxidative and
lipid peroxidation have been considered in relation with pathological dendritic
changes. Dendrotoxicity due to brain edema and brain ischemia seems to be the
fundamental pathogenetic mechanism underlying the dendritic damage.
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Introduction

Dendritic development and arborisation show aberrant or
anomalous patterns in aging process and in various central
nervous system diseases, such as brain trauma, schizophrenia,
neurodegenerative diseases, epilepsy, malnutrition in developing
brain, infections, mental retardation, hydrocephalus, cerebral
ischemia, and exposure to alcohol and other toxins.'** The formation
of meganeurites in human neuronal storage diseases,** the existence
of more branched dendrites in neuronal elderly individuals,*** and
the appearance of new dendritic growths in Alzheimer disease,' reveal
that the adult human neuronal system appears capable of responding
to various stimulus, and exhibits the potential to modify existing
neuronal connections. Abnormal dendritic development and dendritic
spine “dysgenesis” have been reported in mental retardation,?5!52
and severe protein-calorie malnutrition.?’” Aberrant dendritic growth
and aberrant patterns of spine morphology have been reported by
Machado-Salas® in Bourneville’s disease. Marked atrophy of basal
and apical dendrites of neurons of layer 3 and 5 of cerebral cortex
in Tay-Sachs disease was reported by Takashima et al.'”? Loss of
Purkinje cell spines, cactus-like thickenings and atrophy of Purkinje
cell dendrites may be found in Menke's disease,’! and in experimental
encephalopathy induced by chronic application of valproate.’
Abnormalities of dendritic arborization have been observed by light
microscopy in a variety of cerebral malformation, such as microgiria
and lisencephaly.'

In epilepsy a wide spectrum of dendritic pathology has been
recognized, such as loss of dendritic spine and development of
nodular or fusiform enlargements along the dendritic shafts.>
Dendritic abnormalities have been also described in normal aging
and various dementias.>*® Normal elderly individuals have longer
and more branched dendrites than younger and senile dementia
patients.***>° Abnormal dendrites have been also found in Huntington’s
disease.® Age-related regulation of dendritic endocytosis was reported

by Blanpied et al.! Castejon & Arismendi* described swollen and
beaded dendrites, disrupted of limiting plasma membrane and
cytoskeletal structures in the human edematous cerebral cortex
associated to brain trauma, congenital malformations, and brain
tumors. Works et al.®* reported age-dependent dendritic atrophy of
basilar dendrites in the rat nucleus magnocellularis related with loss
of cholinergic innervation. Vega et al.®* described increased dendritic
length, and decreased density of synaptic spines in the prefrontal
cortex of rat with renovascular hypertension. Allred and Jones (2004)
found dendritic structural plasticity after unilateral ischemic damage
of rat sensory motor cortex. Wedzony et al.** reported diminished
length of basilar dendrites of prefrontal pyramidal neurons in adult
rats after blockade of NMDA receptors in the postnatal period.
Rensing et al.®® (described dendritic swelling and loss of spines during
electrographic seizures induced by 4-aminopyridine in transgenic
mice. Peyghambari et al.* found a significant reduction in the length
of most dendrites in the axotomized motoneurons of the spinal cord in
newborn rats. Radley et al.®® encountered reversible apical dendritic
retraction in the rat medial prefrontal cortex following repeated stress.
Brown et al.*” also found remodelling of apical dendrites, atrophy of
distal branches, and sparing of proximal branches induced by stress
in medial prefrontal cortex. Flores et al.’ reported decreased length
of basilar dendrites in post-puberal rats after nenonatal excitotoxis
lesions of the ventral hippocampus. Zaja-Millatovics et al.®
demonstrated shortened dendritic length of neostriatal medium spiny
neurons in Parkinson disease. Ishikura et al.®’ described dendritic
atrophy in prion disease. Dierssen & Ramakers” emphasized the
dendritic pathology in mental retardation from the genetic point of
view. Shimada et al.”' studying a model of cerebral degeneration, the
ageing SAMP10 mouse, described age- related dendritic retraction
in the entire cerebral cortex and olfactory bulb. Brief exposure to
excitotoxic agonists can result in substantial loss of the microtubule-
associated protein MAP2 from neuronal dendrites, and accumulation
in neuronal somata. A possible mechanism underling MAP2 loss is
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the activation of the calcium-dependent protease calpain by excessive
dendritic Ca2+-loading.”

Dlugos” reported smooth endoplasmic reticulum dilation and
degeneration in Purkinje neuron dendrites of aging ethanol-fed female
rats. Baloyannis et al.”* describe substantial alteration of dendritic
arborisation in the acoustic cortex in Alzheimer’s disease.

In instances of CNS injury or disease, increased concentrations
of extracellular glutamate can result in the over-activation of
ionotropic glutamate receptors and trigger neuronal cell death (termed
excitotoxicity). Two early hallmarks of such neuronal toxicity are
mitochondrial dysfunction (depolarization, decreased ATP synthesis,
structural collapse and potential opening of the permeability transition
pore) and the formation of focal swellings (also termed varicosities/
beads) along the length of the dendrites.”

Dlugos” reported dilation of the smooth endoplasmic reticulum
(SER), and the formation of degenerating bodies within Purkinje
neuron dendrites of aging ethanol-fed female rats, According to this
Author, dilation of the SER and the formation of degenerating bodies
may be a predictor of dendritic regression. Shansky & Morrison
reviewed the stress-induced dendritic remodeling in the medial
prefrontal cortex (mPFC), with particular focus on new findings
that illuminate modulators of these effects. Compression instantly
twisted the microtubules and deformed the membrane contour of
dendritic trunks, and immediately reduced dendritic spines on the
entire dendritic arbor. Liu et al.”reviewed the dendritic changes that
have been recorded in neurodegenerative processes including those
occurring in development, ageing and diseases. The findings suggest
that dendritic pathology is an early sign in disease and underline the
importance of synapto-dendritic structure, providing new insights into
therapeutic strategies.

Deng et al.” made the characterization of dendritic morphology
and neurotransmitter phenotype of thoracic descending propriospinal
neurons after complete spinal cord transection and GDNF treatment.
Deng & Reiner”® found reductions in dendritic branching and
thalamostriatal input in cholinergic interneurons in the Q140 knockin
mouse model of Huntington’s disease.

Tau protein in dendrites and synapses has been recently implicated
in synaptic degeneration and neuronal malfunction. Chronic stress,
a well-known inducer of neuronal/synaptic atrophy, triggers
hyperphosphorylation of Tau protein and cognitive deficits. Exposure
to chronic stress resulted in atrophy of apical dendrites and spine
loss in the prefrontal cortex (PFC) neurons. Tau may exert its effects
through synaptic mitochondria.” Nava et al.** described the temporal
dynamics of acute stress-induced dendritic remodeling in medial
prefrontal cortex and the protective effect of desipramine. These
authors found significant atrophy of apical dendrites at 1day, which
was prevented by chronic desipramine, and at 14days after stress
exposure.

Saberi et al.*! reported dendritic-like aggregates in the motor cortex
that co-localized with pTDP-43 and their repeat RNAs dipeptide
repeat proteins (DPRs) in amyotrophic lateral sclerosis.

In the present review we describe the structural changes of
dendrites in different esperimental and human central nervous system
diseases, and we analyze at submicroscopic level the dendritic
morphological changes of nerve cells in the edematous human
cerebral cortex associated to congenital hydrocephalus, brain trauma,
and brain tumors in an attempt to provide better insight on the
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pathological changes induced by these distinct nosological entities,
and the associated brain ischemia.

Submicroscopic changes of dendrites in congenital
hydrocephalus.

The immature hydrocephalic cerebral cortex neuropil in neonate
patients with congenital hydrocephalus shows irregularly beaded
shaped, and swollen and vacuolated dendritic processes with elongated
and dark mitochondria. Most patients with congenital hydrocephalus
exhibit lamellipodic and filopodic dendritic processes, and endocytic
vesicle formation at the limiting plasma membrane,** These dendrites
exhibit mushroom, stubby and filopodic types of dendritic spines
making asymmetric synaptic junctions (Figure 1).3 Some dendritic
processes show fragmented plasma membrane in areas of severe brain
hydrocephalic edema (Figure 2).

Figure 1 Arnold-Chiari malformation and communicant hydrocephalus.
Neuropil of a 10days-old neonate. Right parietal cortex.

High magnification of a swollen and clear dendrite (DI) exhibiting dark
swollen mitochondria (M) with clear dilated cristae, and intact (long arrow)
and few fragmented microtubules (arrowheads).A neighbouring clear dendrite
(D2) shows an asymmetric synaptic contact (double head arrow) by means
of mushroom type-dendritic spine (S). The asterisks label the enlarged
extracellular space. X 50.000.

Mc Allister et al.3 reported dendritic varicosities and spine loss
as the most striking dendritic alterations in experimental induced
hydrocephalus in newborn rats. Harris et al.* found a decreased in the
total length of dendritic tree in the infant H-TX rats. Hydropic dendritic
deterioration has been reported in feline-infantile hydrocephalus by
Kreibel & McAllister.*

Dendrite pathology in human traumatic brain injuries

In patients with traumatic brain injuries exhibiting contusions and
associated subdural or extradural hematoma or hygroma, varicose
swollen dendrites with fragmented plasma membranes, disruption of
cytoskeletal structures characterized by disintegrated microtubules
and neurofilaments, electron lucid and vacuolated dendroplasm,
enlarged rough and smooth endoplasmic reticulum, partial loss of
dendritic spines, increased vesicular transport of microvesicles, dense
round and elongated inclusion bodies, and complex or clathrin-coated
vesicles are observed (Figure 2) (Figure 3).
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Figure 2 Congenital hydrocephalus associated with lumbar meningomielocele.

Right parietal cortex.

Neuropil of a |2days-old neonate showing the longitudinal section of an
edematous dendritic process (D) showing a clear dendroplasm, swollen

mitochondrion (M), cross sectioned microtubules and neurofilaments (circles).

The long arrows label the disrupted dendritic plasma membrane. Note the
dilated extracellular space (asterisks) surrounding the dendritic profile that
features hydrocephalus interstitial edema. X 45.000.

Figure 3 Brain trauma. Severe contusion of frontal region. Left frontal cortex.

Swollen shaft dendritic segment (D) displaying dilated smooth endoplasmic
reticulum cisterns (ER), and intact (long arrow) and fragmented

Dendritic angulations, and nodular or segmentary dendritic
swelling were earlier reported by Vaquero et al.55, Gallyas & Zoltay'
and Swann et al.’! in human epileptic dendrites. According to Vaquero
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et al.,” the nodular dendritic swellings are due to alteration in the
microtubular arrangement. Vacuolated dendrites inducing hydropic
deterioration and degeneration of dendrites have been reported
by Goldstein et al.® in rat central nervous system after ethanol
consumption, by Posmantur et al.*¢ after traumatic brain injury in
rats, and by Sobaniec-Lotowska* in rat experimental encephalopathy
induced by valproate. Saito et al.¥” found calcium accumulation in
swollen dendrites following cerebral ischemia and traumatic brain
injury. Gallyas & Zoltay' considered that in cases of head injury,
the beaded appearance of dendritic and axonal processes indicates
an advanced stage of morphopathological damage. In addition, some
neurons exposed to hypothermia, NMDA or ionophore also developed
beaded dendrites (Emery and Lucas, 1995). Focal dendritic swelling
was observed by Ferrer et al. (1998) in mucopolysaccharidoses types
I, Il and I11. The focal swelling of dendrites is apparently similar to that
observed in axonal processes also due to destruction of cytoskeletal
network.®#’ Swollen and beaded dendrites have been widely reported
in a large variety of pathological entities. Dendritic swelling was
observed in stroke-prone spontaneously hypertensive rats,’ following
intrathecal infusion of N-methyl-D-aspartate,”*! in rats with
neuroleptic-induced dyskinesias,” and in rat brain during acute focal
ischemia.*> Swann et al.* postulated an ongoing excitotoxic injury of
dendrites (dendrotoxicity) produced by excessive release of glutamate
especially during seizures. In brain trauma there is also glutamate-
induced citotoxicity,” which supports Swann et al.** hypothesis.
According to Hasbani et al.”* the postsynaptic neuronal dendrite is
selectively vulnerable to hypoxic-ischemic brain injury and glutamate
receptor overactivation. Sodium, chloride, and water entry contribute
acutely to excitoxicity dendritic injury, and calcium entry through
NMDA receptors results in lasting structural changes in damaged
dendrites. Lately Hasbani et al.”* expressed that in cerebral ischemia,
neurons exposed to NMDA, kainite or oxygen-glucose deprivation
suffer dendritic beading and lost of dendritic spines.

Lee et al.” point out that Ca™-activated degradation of cytoskeletal
proteins appears to be an early and important component of the post-
ischemic response in hippocampal neurons, which can contribute
to neuronal death. According to Tomimoto & Yanagihara,”” the
disintegration of microtubules and the resulting disruption of dendritic
transport may contribute to subsequent development of delayed
neuronal death. According Hayes et al.”® the traumatic brain injuries
produce a widespread derangement to the neuronal cytoskeleton.

The molecular mechanism inducing the disintegration of
cytoskeletal structures in traumatic brain injury could be due to loss
of cytoskeletal proteins and microtubule associated protein 2 (MAP2),
possibly by calpain-mediated proteolysis.’*** Brain contusions also
induce loss of both, MAP2 and neurogranin immunoreactivity.'®

Mild and repetitive brain injuries may trigger cytoskeletal
alterations related to neuronal degeneration and abnormal behaviour.!"!
Cytoskeletal disruption is a key pathological feature of Alzheimer’s
disease, characterized by dendritic degeneration.>!%?

Ultrastructural abnormalities of dendrites with damage of
endoplasmic reticulum, mitochondrial lesion and disintegration of
microtubules have been observed after chronic administration of
valproate.*® Similar dendritic changes have been recently observed
after fluid perfusion injury.!®

Our findings suggest that anoxia e ischemia are the major
pathogenetic mechanisms of dendritic swelling in the edematous
human cerebral cortex associated to brain trauma, tumours
and congenital malformations.> Our observations on dendritic
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abnormalities in brain traumatic injuries revealed predominant
beaded shape of swollen dendrites in comparison with those seen
in brain malformations and tumors. The beaded dendrites exhibit
disintegrated microtubules and microfilaments mainly at the dendritic
varicosities. Derangement of dendritic cytoskeletal structures, mainly
fragmentation and disintegration of microtubules and neurofilaments,
are due to multifactorial factors, such as the shear stress induced by the
traumatic agent, mitochondrial swelling, anoxic-ischemic condition
of brain tissue, and protease activation.?**’

In relationship with the damage of the limiting plasma membrane
and the dendritic cytomembranes, such as mitochondrial, rough and
smooth endoplasmic reticulum, lysosomal and Golgi membranes,
could be due to increased permeability of lysosomes and release of
acid and neutral proteases,'™ interruption of dendritic transport,’’
calpain-mediated spectrin breakdown, free radical release and
lipid peroxidation,'1"” delayed phospholipid degradation by
phospholipase activation,'® disruption of cytoskeletal structures,
mitochondrial abnormalities and impaired production of ATP,
elevation of intracellular calcium,* activation of calcium-dependent
proteolitic enzymes,” glutamate-induced neurotoxicity,*1”11° protein
aggregation after brain ischemia and reperfusion,'"'"? intensity of
shear forces in brain traumatic injury, increased intracranial pressure in
moderate and severe edema.??* and release of lysosomal enzymes.!'!3

Dendritic abnormalities in brain tumors

In relationship with the alteration of dendritic processes in brain
tumors, such as in cystic craniopharyngioma and ependymoma,
we have observed swollen dendrites with a granular proteinaceous
aggregation in the dendroplasm, vacuolated rough and smooth
endoplasmic reticulum canaliculi, dark and clear swollen
mitochondria, disintegrated neurofilaments, scarce amount or absent
of microtubules, presence of clathrin-coated vesicles and myelin-
like figures* (Figure 5). Swelling of dendrites with disarray of
microtubules and neurofilaments and changes of surface morphology
of dendritic spines were earlier reported by Spacek in epitumorous
cerebral cortex.'*!

s

Figure 4 Brain traumas. Contusion and facture of frontal region. Left frontal
cortex.

Beaded dendrite (D) showing a huge vacuole (V), microtubules (arrowheads)
and activated asymmetric axodendritic synapses (long arrows) are seen in the
initial dilated segment. X 60.000.

Copyright:
©2019 Castejon 101

Figure 5 Cystic craniopharyngioma. Right fronto-temporal cortex. Severe
edema.

Clear swollen dendrite (D) containing dark edematous mitochondria (M) and
vacuolization of smooth and rough endoplasmic reticulum (ER). Microtubules
and microfilaments appear disintegrated giving to the dendroplasm a granular
aspect (circles). X 60.000.

Concluding remarks

Swollen and beaded dendrites exhibit fragmentation of limiting
plasma membrane, cytomembranes and cytoskeletal structures.
The swollen dendrites show vacuolization, dense residual bodies,
enlarged rough and smooth endoplasmic reticulum, and edematous
clear and dark mitochondria. The multifactorial processes associated
with brain edema and brain ischemia, such as calcium overload,
activation of calcium-dependent proteolitic enzymes, protein
aggregation, glutamate-induced neurotoxicity, release of lysosomal
enzymes, deficit of ATP, stress oxidative and lipid peroxidation have
been considered in relation with pathological dendritic changes.
Dendrotoxicity due to brain edema and brain ischemia seems to be
the fundamental pathogenetic mechanism underlying the dendritic
damage.
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