
Submit Manuscript | http://medcraveonline.com

Introduction
Dendritic development and arborisation show aberrant or 

anomalous patterns in aging process and in various central 
nervous system diseases, such as brain trauma, schizophrenia, 
neurodegenerative diseases, epilepsy, malnutrition in developing 
brain, infections, mental retardation, hydrocephalus, cerebral 
ischemia, and exposure to alcohol and other toxins.1–48 The formation 
of meganeurites in human neuronal storage diseases,4,8 the existence 
of more branched dendrites in neuronal elderly individuals,49,50 and 
the appearance of new dendritic growths in Alzheimer disease,1 reveal 
that the adult human neuronal system appears capable of responding 
to various stimulus, and exhibits the potential to modify existing 
neuronal connections. Abnormal dendritic development and dendritic 
spine “dysgenesis” have been reported in mental retardation,28,51,52 
and severe protein-calorie malnutrition.27  Aberrant dendritic growth 
and aberrant patterns of spine morphology have been reported by 
Machado-Salas53 in Bourneville’s disease. Marked atrophy of basal 
and apical dendrites of neurons of layer 3 and 5 of cerebral cortex 
in Tay-Sachs disease was reported by Takashima et al.12 Loss of 
Purkinje cell spines, cactus-like thickenings and atrophy of Purkinje 
cell dendrites may be found in Menke´s disease,51 and in experimental 
encephalopathy induced by chronic application of valproate.36 
Abnormalities of dendritic arborization have been observed by light 
microscopy in a variety of cerebral malformation, such as microgiria 
and lisencephaly.10

In epilepsy a wide spectrum of dendritic pathology has been 
recognized, such as loss of dendritic spine and development of 
nodular or fusiform enlargements along the dendritic shafts.55–57  
Dendritic abnormalities have been also described in normal aging 
and various dementias.5,50  Normal elderly individuals have longer 
and more branched dendrites than younger and senile dementia 
patients.4,58,59Abnormal dendrites have been also found in Huntington´s 
disease.60 Age-related regulation of dendritic endocytosis was reported 

by Blanpied et al.61 Castejón & Arismendi23 described swollen and 
beaded dendrites, disrupted  of limiting plasma membrane and 
cytoskeletal structures in the human edematous cerebral cortex 
associated to brain trauma, congenital malformations, and brain 
tumors. Works et al.62 reported age-dependent dendritic atrophy of 
basilar dendrites in the rat nucleus magnocellularis related with loss 
of cholinergic innervation. Vega et al.63 described increased dendritic 
length, and decreased density of synaptic spines in the prefrontal 
cortex of rat with renovascular hypertension. Allred and Jones (2004) 
found dendritic structural plasticity after unilateral ischemic damage 
of rat sensory motor cortex. Wedzony et al.64 reported diminished 
length of basilar dendrites of prefrontal pyramidal neurons in adult 
rats after blockade of NMDA receptors in the postnatal period. 
Rensing et al.65 (described dendritic swelling and loss of spines during 
electrographic seizures induced by 4-aminopyridine in transgenic 
mice. Peyghambari et al.46 found a significant reduction in the length 
of most dendrites in the axotomized motoneurons of the spinal cord in 
newborn rats. Radley et al.66 encountered reversible apical dendritic 
retraction in the rat medial prefrontal cortex following repeated stress. 
Brown et al.67 also found remodelling of apical dendrites, atrophy of 
distal branches, and sparing of proximal branches induced by stress 
in medial prefrontal cortex. Flores et al.47 reported decreased length 
of basilar dendrites in post-puberal rats after nenonatal excitotoxis 
lesions of the ventral hippocampus. Zaja-Millatovics et al.68 
demonstrated shortened dendritic length of neostriatal medium spiny 
neurons in Parkinson disease. Ishikura et al.69 described dendritic 
atrophy in prion disease. Dierssen & Ramakers70 emphasized the 
dendritic pathology in mental retardation from the genetic point of 
view. Shimada et al.71 studying a model of cerebral degeneration, the 
ageing SAMP10 mouse, described age- related dendritic retraction 
in the entire cerebral cortex and olfactory bulb. Brief exposure to 
excitotoxic agonists can result in substantial loss of the microtubule-
associated protein MAP2 from neuronal dendrites, and accumulation 
in neuronal somata. A possible mechanism underling MAP2 loss is 
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Abstract

The present review describes the pathological changes of shaft dendrites in 
most central nervous diseases. We have illustrated most pathological changes 
using cortical biopsies of patients with congenital hydrocephalus, severe and 
complicated traumatic brain injuries, and brain tumors.  Swollen and beaded 
dendrites exhibit fragmentation of limiting plasma membrane, cytomembranes 
and cytoskeletal structures. The swollen dendrites show vacuolization, dense 
residual bodies, enlarged rough and smooth endoplasmic reticulum, edematous 
clear and dark mitochondria. The multifactorial processes associated with brain 
edema and brain ischemia, such as calcium overload, activation of calcium-
dependent proteolitic enzymes, protein aggregation, glutamate-induced 
neurotoxicity, release of lysosomal enzymes, deficit of ATP, stress oxidative and 
lipid peroxidation have been considered in relation with pathological dendritic 
changes. Dendrotoxicity due to brain edema and brain ischemia seems to be the 
fundamental pathogenetic mechanism underlying the dendritic damage.   
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the activation of the calcium-dependent protease calpain by excessive 
dendritic Ca2+-loading.72 

Dlugos73 reported smooth endoplasmic reticulum dilation and 
degeneration in Purkinje neuron dendrites of aging ethanol-fed female 
rats. Baloyannis et al.74 describe substantial alteration of dendritic 
arborisation in the acoustic cortex in Alzheimer’s disease. 

In instances of CNS injury or  disease, increased concentrations 
of extracellular glutamate can result in the over-activation of 
ionotropic glutamate receptors and trigger neuronal cell death (termed 
excitotoxicity). Two early hallmarks of such neuronal toxicity are 
mitochondrial dysfunction (depolarization, decreased ATP synthesis, 
structural collapse and potential opening of the permeability transition 
pore) and the formation of focal swellings (also termed varicosities/
beads) along the length of the dendrites.75 

Dlugos73 reported dilation of the smooth endoplasmic reticulum 
(SER), and the formation of degenerating bodies within Purkinje 
neuron dendrites of aging ethanol-fed female rats, According to this 
Author, dilation of the SER and the formation of degenerating bodies 
may be a predictor of dendritic regression.  Shansky & Morrison76 
reviewed the stress-induced  dendritic  remodeling in the medial 
prefrontal cortex (mPFC), with particular focus on new findings 
that illuminate modulators of these effects. Compression instantly 
twisted the microtubules and deformed the membrane contour of 
dendritic trunks, and immediately reduced dendritic spines on the 
entire dendritic arbor. Liu et al.77reviewed the dendritic changes that 
have been recorded in neurodegenerative processes including those 
occurring in development, ageing and diseases. The findings suggest 
that dendritic pathology is an early sign in disease and underline the 
importance of synapto-dendritic structure, providing new insights into 
therapeutic strategies.

Deng et al.78 made the characterization of dendritic morphology 
and neurotransmitter phenotype of thoracic descending propriospinal 
neurons after complete spinal cord transection and GDNF treatment. 
Deng &  Reiner78 found reductions in  dendritic  branching and 
thalamostriatal input in cholinergic interneurons in the Q140 knockin 
mouse model of Huntington’s disease.

Tau protein in dendrites and synapses has been recently implicated 
in synaptic degeneration and neuronal malfunction. Chronic stress, 
a well-known inducer of neuronal/synaptic atrophy, triggers 
hyperphosphorylation of Tau protein and cognitive deficits. Exposure 
to chronic stress resulted in atrophy of apical  dendrites  and spine 
loss in the prefrontal cortex (PFC) neurons. Tau may exert its effects 
through synaptic mitochondria.79 Nava et al.80 described the temporal 
dynamics of acute stress-induced  dendritic  remodeling in medial 
prefrontal cortex and the protective effect of desipramine. These 
authors found significant atrophy of apical dendrites at 1day, which 
was prevented by chronic desipramine, and at 14days after stress 
exposure.

Saberi et al.81 reported dendritic-like aggregates in the motor cortex 
that co-localized with pTDP-43 and their repeat RNAs dipeptide 
repeat proteins (DPRs) in amyotrophic lateral sclerosis.

In the present review we describe the structural changes of 
dendrites in different esperimental and human central nervous system 
diseases, and we analyze at submicroscopic level the dendritic 
morphological changes of nerve cells in the edematous human 
cerebral cortex associated to congenital hydrocephalus, brain trauma, 
and brain tumors in an attempt to provide better insight on the 

pathological changes induced by these distinct nosological entities, 
and the associated brain ischemia.

Submicroscopic changes of dendrites in congenital 
hydrocephalus.

The immature hydrocephalic cerebral cortex neuropil in neonate 
patients with congenital hydrocephalus shows irregularly beaded 
shaped, and swollen and vacuolated dendritic processes with elongated 
and dark mitochondria. Most patients with congenital hydrocephalus 
exhibit lamellipodic and filopodic dendritic processes, and endocytic 
vesicle formation at the limiting plasma membrane,82 These dendrites 
exhibit mushroom, stubby and filopodic types of dendritic spines 
making asymmetric synaptic junctions (Figure 1).83 Some dendritic 
processes show fragmented plasma membrane in areas of severe brain 
hydrocephalic edema (Figure 2). 

Figure 1 Arnold-Chiari malformation and communicant hydrocephalus. 
Neuropil of a 10days-old neonate. Right parietal cortex.

High magnification of a swollen and clear dendrite (D1) exhibiting dark 
swollen mitochondria (M) with clear dilated cristae, and intact (long arrow) 
and few fragmented microtubules (arrowheads). A neighbouring clear dendrite 
(D2) shows an asymmetric synaptic contact (double head arrow) by means 
of mushroom type-dendritic spine (S). The asterisks label the enlarged 
extracellular space. X 50.000. 

Mc Allister et al.84 reported dendritic varicosities and spine loss 
as the most striking dendritic alterations in experimental induced 
hydrocephalus in newborn rats. Harris et al.85 found a decreased in the 
total length of dendritic tree in the infant H-TX rats. Hydropic dendritic 
deterioration has been reported in feline-infantile hydrocephalus by 
Kreibel & McAllister.30

Dendrite pathology in human traumatic brain injuries

In patients with traumatic brain injuries exhibiting contusions and 
associated subdural or extradural hematoma or hygroma, varicose 
swollen dendrites with fragmented plasma membranes, disruption of 
cytoskeletal structures characterized by disintegrated microtubules 
and neurofilaments, electron lucid and vacuolated dendroplasm, 
enlarged rough and smooth endoplasmic reticulum, partial loss of 
dendritic spines, increased vesicular transport of microvesicles, dense 
round and elongated inclusion bodies, and complex or clathrin-coated 
vesicles are observed  (Figure 2) (Figure 3). 
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Figure 2 Congenital hydrocephalus associated with lumbar meningomielocele. 
Right parietal cortex. 

Neuropil of a 12days-old neonate showing the longitudinal section of an 
edematous dendritic process (D) showing a clear dendroplasm, swollen 
mitochondrion (M), cross sectioned microtubules and neurofilaments (circles). 
The long arrows label the disrupted dendritic plasma membrane. Note the 
dilated extracellular space (asterisks) surrounding the dendritic profile that 
features hydrocephalus interstitial edema. X 45.000.

Figure 3 Brain trauma. Severe contusion of frontal region. Left frontal cortex. 

Swollen shaft dendritic segment (D) displaying dilated smooth endoplasmic 
reticulum cisterns (ER), and intact (long arrow) and fragmented

Dendritic angulations, and nodular or segmentary dendritic 
swelling were earlier reported by Vaquero et al.55, Gallyas & Zoltay13 
and Swann et al.31 in human epileptic dendrites. According to Vaquero 

et al.,55 the nodular dendritic swellings are due to alteration in the 
microtubular arrangement. Vacuolated dendrites inducing hydropic 
deterioration and degeneration of dendrites have been reported 
by Goldstein et al.6 in rat central nervous system after ethanol 
consumption, by Posmantur et al.86 after traumatic brain injury in 
rats, and by Sobaniec-Lotowska36 in rat experimental encephalopathy 
induced by valproate. Saito et al.87 found calcium accumulation in 
swollen dendrites following cerebral ischemia and traumatic brain 
injury. Gallyas & Zoltay13 considered that in cases of head injury, 
the beaded appearance of dendritic and axonal processes indicates 
an advanced stage of morphopathological damage. In addition, some 
neurons exposed to hypothermia, NMDA or ionophore also developed 
beaded dendrites (Emery and Lucas, 1995). Focal dendritic swelling 
was observed by Ferrer et al. (1998) in mucopolysaccharidoses types 
I, II and III. The focal swelling of dendrites is apparently similar to that 
observed in axonal processes also due to destruction of cytoskeletal 
network.88,89 Swollen and beaded dendrites have been widely reported 
in a large variety of pathological entities. Dendritic swelling was 
observed in stroke-prone spontaneously hypertensive rats,5 following 
intrathecal infusion of N-methyl-D-aspartate,90,91 in rats with 
neuroleptic-induced dyskinesias,92 and in rat brain during acute focal 
ischemia.32 Swann et al.56 postulated an ongoing excitotoxic injury of 
dendrites (dendrotoxicity) produced by excessive release of glutamate 
especially during seizures. In brain trauma there is also glutamate-
induced citotoxicity,93 which supports Swann et al.94  hypothesis. 
According to Hasbani et al.94 the postsynaptic neuronal dendrite is 
selectively vulnerable to hypoxic-ischemic brain injury and glutamate 
receptor overactivation. Sodium, chloride, and water entry contribute 
acutely to excitoxicity dendritic injury, and calcium entry through 
NMDA receptors results in lasting structural changes in damaged 
dendrites. Lately Hasbani et al.94 expressed that in cerebral ischemia, 
neurons exposed to NMDA, kainite or oxygen-glucose deprivation 
suffer dendritic beading and lost of dendritic spines.  

Lee et al.95 point out that Ca++-activated degradation of cytoskeletal 
proteins appears to be an early and important component of the post-
ischemic response in hippocampal neurons, which can contribute 
to neuronal death. According to Tomimoto & Yanagihara,97 the 
disintegration of microtubules and the resulting disruption of dendritic 
transport may contribute to subsequent development of delayed 
neuronal death. According Hayes et al.98 the traumatic brain injuries 
produce a widespread derangement to the neuronal cytoskeleton. 

The molecular mechanism inducing the disintegration of 
cytoskeletal structures in traumatic brain injury could be due to loss 
of cytoskeletal proteins and microtubule associated protein 2 (MAP2), 
possibly by calpain-mediated proteolysis.86,99 Brain contusions also 
induce loss of both, MAP2 and neurogranin immunoreactivity.100  

Mild and repetitive brain injuries may trigger cytoskeletal 
alterations related to neuronal degeneration and abnormal behaviour.101 
Cytoskeletal disruption is a key pathological feature of Alzheimer’s 
disease, characterized by dendritic degeneration.5,102

Ultrastructural abnormalities of dendrites with damage of 
endoplasmic reticulum, mitochondrial lesion and disintegration of 
microtubules have been observed after chronic administration of 
valproate.36 Similar dendritic changes have been recently observed 
after fluid perfusion injury.103 

Our findings suggest that anoxia e ischemia are the major 
pathogenetic mechanisms of dendritic swelling in the edematous 
human cerebral cortex associated to brain trauma, tumours 
and congenital malformations.83 Our observations on dendritic 
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abnormalities in brain traumatic injuries revealed predominant 
beaded shape of swollen dendrites in comparison with those seen 
in brain malformations and tumors. The beaded dendrites exhibit 
disintegrated microtubules and microfilaments mainly at the dendritic 
varicosities. Derangement of dendritic cytoskeletal structures, mainly 
fragmentation and disintegration of microtubules and neurofilaments, 
are due to multifactorial factors, such as the shear stress induced by the 
traumatic agent, mitochondrial swelling, anoxic-ischemic condition 
of brain tissue, and protease activation.24,87

In relationship with the damage of the limiting plasma membrane 
and the dendritic cytomembranes, such as mitochondrial, rough and 
smooth endoplasmic reticulum, lysosomal and Golgi membranes, 
could be due to increased permeability of lysosomes and release of 
acid and neutral proteases,104 interruption of dendritic transport,97 

calpain-mediated spectrin breakdown, free radical release and 
lipid peroxidation,105–107 delayed phospholipid degradation by 
phospholipase activation,108 disruption of cytoskeletal structures, 
mitochondrial abnormalities and impaired production of ATP, 
elevation of intracellular calcium,87,99 activation of calcium-dependent 
proteolitic enzymes,93 glutamate-induced neurotoxicity,31,107,110  protein 
aggregation after brain ischemia and reperfusion,111,112 intensity of 
shear forces in brain traumatic injury, increased intracranial pressure in 
moderate and severe edema.23,24 and release of lysosomal enzymes.113 

Dendritic abnormalities in brain tumors

In relationship with the alteration of dendritic processes in brain 
tumors, such as in cystic craniopharyngioma and ependymoma, 
we have observed swollen dendrites with a granular proteinaceous 
aggregation in the dendroplasm, vacuolated rough and smooth 
endoplasmic reticulum canaliculi, dark and clear swollen 
mitochondria, disintegrated neurofilaments, scarce amount or absent 
of microtubules, presence of clathrin-coated vesicles and myelin-
like figures24 (Figure 5). Swelling of dendrites with disarray of 
microtubules and neurofilaments and changes of surface morphology 
of dendritic spines were earlier reported by Spacek38 in epitumorous 
cerebral cortex.114,115

Figure 4 Brain traumas. Contusion and facture of frontal region. Left frontal 
cortex. 

Beaded dendrite (D) showing a huge vacuole (V), microtubules (arrowheads) 
and activated asymmetric axodendritic synapses (long arrows) are seen in the 
initial dilated segment. X 60.000.

Figure 5 Cystic craniopharyngioma. Right fronto-temporal cortex. Severe 
edema. 

Clear swollen dendrite (D) containing dark edematous mitochondria (M) and 
vacuolization of smooth and rough endoplasmic reticulum (ER). Microtubules 
and microfilaments appear disintegrated giving to the dendroplasm a granular 
aspect (circles). X 60.000.

Concluding remarks
Swollen and beaded dendrites exhibit fragmentation of limiting 

plasma membrane, cytomembranes and cytoskeletal structures. 
The swollen dendrites show vacuolization, dense residual bodies, 
enlarged rough and smooth endoplasmic reticulum, and edematous 
clear and dark mitochondria. The multifactorial processes associated 
with brain edema and brain ischemia, such as calcium overload, 
activation of calcium-dependent proteolitic enzymes, protein 
aggregation, glutamate-induced neurotoxicity, release of lysosomal 
enzymes, deficit of ATP, stress oxidative and lipid peroxidation have 
been considered in relation with pathological dendritic changes. 
Dendrotoxicity due to brain edema and brain ischemia seems to be 
the fundamental pathogenetic mechanism underlying the dendritic 
damage.   
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