Neurodegenerative diseases (NDs) such as Alzheimer's disease [1,2] and Parkinson disease [3] are among the big challenges facing the researchers and the clinical professionals. NDs have complex mechanisms including pathways that are yet to be elucidated. Each of these diseases is often studied separately and investigated towards explaining the mechanisms and finding potential therapies for one disease. Changing such approach might be a way to improve the data we obtain.

Indeed, many common features exist between the NDs. Therefore, focusing on such common features and mechanisms will allow us to extrapolate the obtained results and explain a pathway involved in more than one neurodegenerative disease and thus find out potential therapies for more than one neurodegenerative disease. Such methodologies still require further elucidation of the common features linking the divers' neurodegenerative disease and whether they are similar to the range of extrapolation of the common features shared between more than a neurodegenerative diseases. Each of these diseases is often studied separately and investigated towards explaining the mechanisms and finding potential therapies of one disease. Changing such approach might be a way to improve the data we obtain.

Importantly, this concept is further strengthened by several facts such as the physiology of the brain that constitutes of a network within which the neurotransmitters are in continuous interactions [4] and the common molecular basics [5] related to the G protein coupled receptors [6] that are of a great importance in both neurophysiology [7] and pharmacotherapy [18-20]. In addition, other non-degenerative diseases share also similar mechanisms or pathways with some NDs which means that the range of extrapolation of the common features shared by some neurodegenerative disease might also include some non-NDs.

Acknowledgement

Abdelaziz Ghanemi is a recipient of a 2013 CAS-TWAS President's Postgraduate Fellowship.

References


