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Introduction
Neurodegenerative diseases (NDs), such as Alzheimer, Parkinson, 

amyotrophic lateral sclerosis (ALS), strokes, spinal cord injuries, 
glioblastoma, Huntington’s and others are caused by progressive 
dysfunction and death of neurons and are becoming increasingly 
prevalent and rising rapidly with advancement of age.1,2 Such 
brain disorders are usually caused by highly complex formation 
process of variety of cytotoxic protein aggregates with different 
structures and morphologies. The protein aggregation in brain causes 
neurodegenerative stressing, resulting in inflammation and oxidative 
stress in the central nervous system.3 Despite of valuable and 
remarkable research findings on pathogenesis of such brain disorders, 
they are still remained incurable.4 The diagnosis process of a patient 
who is suffering from ND takes time in the earlier stage. After 
ruling out all the diagnostic uncertainties and reaching the precise 
verification of the nature of the disease, the treatments are usually 
limited to palliative care or modulation and halting progression of the 
disease activity.5−7

Brain barriers and their functions
The therapeutic of ND faces serious limitation, namely inhibition 

of crossing of effective bio-therapeutic drugs into the complex 
structural of central nervous system (CNS). The major reason for 
such impediments is the complexity of CNS environment which is 
highly protected by the anatomical and biochemical dynamic barriers, 
such as, the blood brain barrier (BBB) and the blood-cerebrospinal 
fluid barrier (BCSFB).8,9 It is estimated that almost 100% of large 
molecules and above 98% of smaller drug molecules cannot penetrate 
and pass the BBB to reach the brain.10 The BBB is mostly constructed 
of endothelial cells(EC) layer which supports on tight junctions 
between neighboring EC,s and a highly restricted passage of blood 
borne components through the endothelial lining.11,12 Existence of 
the BBB with its complex structure in the CNS is very apprehended, 
since it protects the CNS from neuro toxic substances, prevents the 
penetration of unwanted cells into brain, insures brain nutrition, 
absorbs molecules larger than 500 Da and also polar substances.13,14 

The morphology of BCSFB is somehow that it inhibits para cellular 
diffusion of water-soluble molecules across the barrier. It has secretory 
function, produces the blood cerebrospinal fluid and hence allows the 
direct transport of ions and nutrition into the fluid and also removes 
toxic agents out of CSF. The clear and colorless CSF liquid fills and 
surrounds internally and externally the whole brain and spinal cord, 
providing a mechanical impediment against shock.15,16

Applications of polymer based nanoparticles 
in ND

Application of nanotechnology in different areas, including 
medicine, provides exciting possibilities to exploit the great 
advantageous of nanometer particles. This is due to outstanding 
properties of nanomaterials compared to their bulk counterpart. 
Because of the large surface area to volume ratio of nanomaterials 
in the nanoscale, they exhibit unique properties in drug delivery 
systems. The robust technology of nanoparticles in medicine has 
offered revolutionary applications, including designing drug delivery 
systems in those cases that larger molecules cannot cross the barriers 
in the body to reach the damaged areas. One such application of NPs 
in medicine is overcoming brain barriers for treatment of ND.17 The 
BBB in CNS is an insurmountable barrier for various drugs, such 
as antibiotics, antineoplastic agents and a variety of CNS-active 
drugs, especially neuropeptides.18 Efforts have been made to enhance 
penetration of NPs by surface modulation to improve the drug 
concentration in the brain.19 It is demonstrated that those NPs which 
are lipophilic with sizes of 100nm or less can pass through the BBB 
via diffusion mechanism.20 ND therapeutics is liable to face adverse 
effects, such as early breakdown in their alimentary system leading 
quick elimination of the drug. In addition prolonged interaction or 
activation of the drug molecules at wrong target sites lead to prevalence 
of different adverse effects in the body.21 The therapeutic potential of 
the neurodegenerative drugs is then drastically modulated by using 
various intelligent functional carrier systems, including polymers and 
their functionalized and modified forms.22,23 In such drug delivery 
systems nanoparticles are made of solid colloidal natural or synthetic 
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Abstract

The present brief review encompasses the progress in topics focusing on application of 
polymer-based nanoparticles as intelligent drug delivery systems for transporting the 
therapeutic drugs across the blood-brain barrier and explores their treatment potential 
in neurodegenerative disorders. The natural and synthetic biodegradable polymeric 
nanoparticles as drug carrier systems are also discussed.
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polymers and lipids which are usually administered intravenously. 
The nanometer drug systems are engineered with sizes between 1 to 
100 nm which can interact with biological systems at the molecular 
level.23

Therapeutic application of polymers is subjected to some crucial 
limitations. Firstly, they must be biodegradable or easy to remove 
completely and quickly from the body,24 and secondly, they must 
be non-toxic and also their decomposed products afford non-toxic 
and non-immunogenic side particles.25 In comparison of synthetic 
and natural biodegradable polymers, the former appear to be 
advantageous for designing polymeric nanoparticle systems, since 
they can be obtained with the desired properties and controlling 
the synthesis process.26 Among biodegradable polymers, poly 
(lactic- co -glycolic acid, PLGA) is by far one of the most used of 
such polymers, since it is biocompatible as well as biodegradable 
and it is already approved by the EMA and the FDA for parenteral 
administration.27 Natural biodegradable polymers are obtained 

during the growth cycle of living organisms and formed from natural 
sources, like corn, cellulose, potato, sugarcane or they are synthesized 
by bacteria from small molecules, like butyric acid or valeric acid 
to yield polyhydroxybutyrate and polyhydroxybutyrate–co-valerate, 
respectively. They can also be formed from derivatives of animals’ 
sources, such as chitin, chitosan, or proteins.28,29 It is demonstrated 
that modification of natural polymers, such as dextran, cyclodextrins, 
cellulose, alginate, starch and chitosan derivatives affords various 
semi- synthetic polymers used in pharmaceutical technology and drug 
delivery.30,31

Biodegradable synthetic polymers
The synthetic polymers are obtained from fossil sources, oil and 

mixture of biomass and petroleum. Synthetic biodegradable polymers 
have many advantageous over the natural ones because they can be 
easily modified or functionalized.32 Table 1 lists the most common 
synthetic polymers which are used in preparation of polymeric 
nanocarriers systems.

Table 1 Common synthetic biodegradable polymers used as polymeric nanocarriers in drug delivery systems32

Synthetic polymer Active molecules Nanocarrier system References

Polyactides ( PLA ) Rhodamine Nanoparticles 33

Polyglycolides ( PGA ) Lidocaine Nanoparticles 34

Poly(lactide-co-glycolides) PLGA Celecoxib Nanoparticles 35

Polyanhydrides Curcumin Micells 36

Polyorthoesters Celocoxib Nanoparticles 37

Polycyanoacrylates Horseradish peroxidase Nanoparticles 38

Polycarbolactone Cyclosporine Micelles 39

Polyglutamic acide Antigenes Nanoparticles 40

Polymalic acid Doxorubicin Nanoparticles 41

Poly[N-vinyl pyrrolidone] Paclitaxel Nanoparticles 42

Poly[vinylalcohol] Amphotericin B Nanoparticles 43

Poly(acrylic acid ) Papain Nanoparticles 44

Poly(ethylene glycol) Quercetin Nanoparticles 45

Poly acrylamide Hyaluronic acid Nanoparticles 46

Poly(methly methacrylate) Ibuprofen Nanoparticles 47

New insight for tailoring polymeric drug nanocarrier 
systems to penetrate BBB

Recent advancement in designing polymer-based nanoparticles as 
drug carriers to reach brain through BBB brings hope that penetrating 
this barrier for delivering suitable therapeutic drugs to cure 
neurological diseases is not impossible.48,49 In an in vivo study, glucose 
and glucose-poly (ethylene glycol ) methyl ether amine which were 
both coated by surface modified fluorescent silica nanoparticles were 
prepared, fully identified and tested for their ability to penetrate the 
BBB in mice brain. It is demonstrated that the polymeric nanocarrier 
drug systems were efficiently penetrated the barrier to reach the brain 
tissue.50

Conclusion
Among the polymers, the natural and synthetic biodegradable 

polymers exhibit specifically biocompatibility in the body for 
application in polymeric-based nanoparticle drug delivery systems 

used in different areas of medicine, including the ND. Among such 
polymers, poly (lactic-co-glycolic acid) (PLGA) is the most used 
synthetic polymer which is already approved by the EMA and the 
FDA. Although such drug carrier systems have shown some success 
and hope in the treatment of ND, but none of the engineered related 
drug delivery systems have reached clinical trials. Designing proper 
and effective drug carrier systems which can penetrate and cross BBB 
face some drawbacks. Scientists hope to overcome the barriers in the 
future and develop advance and smart polymeric-based nanoparticles 
drug carrier systems for efficient treatment or hopefully succeed in 
therapeutic applications in ND.
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