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Reduction diameter of CaCO, crystals by using
poly acrylic acid might improve cellular uptake of
encapsulated curcumin in breast cancer

Abstract

Although curcumin has many biological activities like antioxidant, anti-inflammatory,
anti-tumorigenic anti-coagulant, anti-bacterial and anti-carcinogenic agents it is not widely
used for cancer treatment because of its poor aqueous solubility, low adsorption, rapid
metabolism and finally it is very sensitive to light. A strategy to encapsulate it in a nanosized
delivery carrier is still needed. Since the rate of cellular uptake depends mainly on size and
shape of nano-carrier. For this reason, our target is to produce polylectrolyte multilayer
capsules depending on characteristic of template such as shape, size and charge. CaCO,
has been chosen as a template because there is no histological evidence for its toxicity after
core removal with ethylene di-amine tetra-acetic acid (EDTA) and it is safer in handling
than other templates. One important issue is how to get smaller CaCO, template in range
of nanosized scale bar while keeping spherical shape and non-toxic as main target during
preparation. In this study, polyacrylic acid (PAA) as a biodegradable polymer was used for
shape and size of CaCO, control during fabrication. Zeta potential was used for identifying
ionic properties of polymer adsorption after each coating layer. Curcumin was loaded
into capsules after core removal and adsorption was measured by spectrophotometry.
Cytotoxicity and cellular internalization were measured by using 3,-4,5 dimethyithiazol-2,5
diphenyl tetrazolium bromide (MTT) assays and transmitted light fluorescence microscopy
in empty capsules and in curcumin-loaded capsules. Encapsulation of curcumin inside
carrier doped with PAA has resolved two issues: PAA has improved the size and shape of
carrier and the carrier could be used as container for curcumin encapsulation.
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Introduction

In the current days, the strategy of cancer nano-therapy based on
designing bio nano engineering carriers, have ability to overcome issues
of previous cancer chemotherapy.* The intelligent nano-therapies
are being designed in order to be accumulated at targeted sites, to be
prolonged in blood circulation and to reduce drug resistance.* In spite
of these desirable features, certain drawback related to nanoparticles
template should be addressed especially for CaCO, templates such
as aggregation state, uncontrolled template crystallization and control
CaCO, dimension.*’ Initially, CaCO, nanoparticles that are fabricated
for drug delivery application should be functionalized by many
alternate layers forming finally multilayer nanoparticles (MLNPs)
after core removal. In this case, the multilayers can increase efficiency
of nanoparticles by controlling properties like thickness, composition,
roughness, porosity offering good vehicles for biomedical and
pharmaceutics application.® However the optimization of MLNPs
depends mainly on designing of CaCO, template. Hanafy* studied
control CaCO, template by integration polymers inside CaCO, matrix

during it is fabrication by using biodegradable polymers such as
polyacrylic acid (PAA) and chitosan (CHI) and non-biodegradable
polymers such as poly (sodium 4-styrene-sulfonate) (PSS), poly
(allylamine hydrochloride) (PAH). The final result showed that the
integration of polymers (either biodegradable or non-biodegradable)
inside CaCO, template can control CaCO; crystallization providing
in most case, homogenous population. Also, the control CaCO,
dimension toward elongated like rode shape was studied. Since PAH
is a weak polymer can prolonged at alkaline pH providing interior
supporter inside CaCO, matrix.” To accept advantage of designing
suitable template for biomedical application, the control CaCO,
matrix needs other investigation. Since, this network matrix-type
is important for the final capsule building against environmental
conditions, such as temperature and humidity. Moreover, this network
type might give capsule mechanical improvement to store it for long
time. Additionally, the network matrix might be important for capsule
structure in blood stream.® The obtained capsule quality is closely
related to the quality of prepared template. In our previous work,
PAA provided CaCO,crystals with diameter ranged as 400 nm-600
nm. Our recent attempt is to reduce diameter of CaCO, down 400nm
with keeping spherical shape and non-toxic as the main target during
preparation. Three concentrations of PAA (1,2 and 3 mg/l ml) are
used and zeta potential surface were measured in case of template,
during alternate coating and after core removal. The second aim is to
investigate the cellular cytotoxicity of encapsulate curcumin in breast
cancer by using MCF-7 cell lines.
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Material and methods
Chemicals

The suppliers of the chemicals were as follows: protamine salt,
grade III (PRM) from Sigma, USA: Dextran sulfate sodium salt from
Leuconostoc spp., poly acrylic acid (PAA) from sigma: Calcium
chloride dehydrate 99,99% (CaCl,-2H,0) from Aldrich, USA: Sodium
carbonate (Na,CO,) from Merck, Germany; ethylenediaminetetraacetic
acid disodium salt dihydrate 99+% from Sigma, USA. Curcumin,
Dulbecco’s modified Eagle’s Medium (DMEM), Fetal Bovine Serum
(FBS), L-glutamine, Penicillin/Streptomycin, Trypsin thiazolyl blue
tetrazolium bromide, Dimethyl sulfoxide (DMSO) and MTT were
purchased from Sigma-Aldrich (Milan, Italy).

Polymers preparation condition

The concentration of used PAA introduced after several
experiments. The final three concentrations are considered as
following (1mg, 2mg &3mg/1ml d.w).

Fabrication of CaCO3 Particles

Calcium carbonate particles (CaCO,) were fabricated with the
same molar used by Volodkin et al. Briefly, 750l of PAA polymer was
taken in glass bottle and mixed well with 615 ul of 0.33 M Na,CO,
then 615 ul of 0.33M CaCl,.H,0 was added rapidly under magnetic
starrier for 30 second and the solution left for 3 minutes without
stirring for sedimentation time. CaCO, particles were collected
by centrifuge at 5000rpm for 1 minute and washed three times by
using Mill Q Water. The procedure results in highly homogeneous,
spherical CaCO, nanoparticles. PAA used in three concentrations;
(Img/ml, 2mg/ml and 3mg/ml). Calcium carbonate was fabricated in
two conditions; PAA mixed with CaCL, and PAA mixed with Na,CO,.
The modification was studied by zeta potential.

Fabrication of PRM/DEX multilayer on PAA doped
CaCoO, template

Protamine and dextran were assembled on the core template
alternatively in 0.5M NaCl solution for 20 minutes (3min.
sonication+17min. shaking) followed by three times washing in milli
Q water. The concentration of each polymer was Smg/ml. The excess
of polyelectrolyte polymers was removed by centrifugation at 3000
rpm for 6 min. After assembling the layers, capsules were obtained by
dissolving the core in 0.2 M. EDTA (pH 5.5) solution under shaking
for 30 min. followed by washing three times by using 0.2M.EDTA
(pH 7.2). Capsules were centrifuged under low speed 800rpm /15
min. to prevent aggregation and they were washed three times in milli
Q water. Furthermore the obtained capsules were kept in PBS pH 7.3.

Transmission Electron Microscopy (TEM)

For TEM analysis, 10ul of each sample suspension was deposited
on the copper grid and air- dried before measurement. Copper grids
sputtered with carbon films were used to support the sample. Samples
were analyzed by a JEOL JEM 1011 operating at 100 kV, coupled with
a GATAN camera ORIUS SC600 with a resolution of 7 Megapixel.
The GATAN camera is controlled by Digital Micrograph.

Electrophoretic Mobility

The electrophoretic mobility of particles and LbL-coated
nanoparticles was measured by using a Malvern Nano ZS90 (Malvern
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Instruments, UK). The mean of five successful running were taken for
particles and after adsorption of each layer.

Cellular uptake

Breast cancer cell lines (MSF-7) were seeded onto sterilized cover
slip in 6 multiwell microplates (5000 cells/well). The cells were
grown in 2 ml DMEM High Glucose (4,5g/1) supplemented with 5%
L-Glutamine, 10% fetal bovine serum, 5% penicillin streptomycin and
5% sodium pyruvate in a humidified atmosphere with 5% CO, at 37
°C. After 24 hours, the encapsulated curcumin and free capsules (40
ul) were added to each well and incubated in a humidified atmosphere
of 37 °C, 5% CO,. MCF-7 cells were fixed by 4% paraformaldehyde,
then washed by PBS, pH 7.2 (phosphate buffer saline). Cells were
stained by DAPI (nuclear stain) for 30 min and then washed twice
by PBS, pH 7.2. Cellular uptake was analyzed after 24 hours by
transmitted light fluorescence microscopy.

Cytotoxicity Assay (MTT)

MSE-7 cell lines were seeded (10,000 cells/well) in 96-well flat
bottom microplates with 100 uL of medium. The cells were allowed
to attach to the bottom of the dish for 24 h at 37°C and then exposed
to different treatments: (40 pl) of free capsules and encapsulated
curcumin. Then cells were incubated for 24 hours. Afterwards, the
cells were washed with PBS, pH 7.2 and incubated with MTT solution
(5 mg/mL) for 4 hours, and the formazan precipitate was dissolved in
100 pL dimethyl sulfoxide, and then the absorbance was measured in
the spectrophotometer reader at 570 nm. The cell viability ratio was
calculated by the following formula:

Cell viability ratio (%) = [sample absorbance-blank absorbance/
control absorbance-blank absorbance]x100.

Results and discussion

Poly (acrylic) acid (PAA) is a hydrophilic polymer® that adopts
random coil conformation in solution. These coils have swelling
properties under ionic and salt strength leading to extend chain
conformations in alkaline solution (Figure 1).
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Figure | Coils of PAA in different pH.

The reason of these prerties is due to the COOH side chain which
is pH responsive i.e. protonated (COOH) at pH <5. While it is de-
protonated (COO") at pH >5.!° In aqueous media of appropriate pH
and ionic strength, the carboxylic groups ionize and develop fixed
charges on the polymer network, generating electrostatic repulsive
forces responsible for pH-dependent causes swelling or de-swelling
of the hydrogel structure.!” In this study, PAA is initially integrated
into matrix of CaCO, crystal during fabrication and then is entrapped
inside the nanocapsules after core removal giving them with unique
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properties.® They are negatively charged related to charge of polymer.
This method might produce detached particles, improve morphological
properties, give rise to a more homogenous population and reduce the
hexagonal shape from population, being calcite and vaterite the main
shapes in CaCOj crystallization (Figure 2).

Time of sedimentaion I

| CaCOs synthesis I

Figure 2 CaCO, fabrication in the presence of PAA with Na,CO,.

In figure 3, Zeta potential measurements indicate that PAA
entrapped CaCO, crystal has presented good potential surface in case
of mixing PAA with Na,CO, compared to CaCL,-PAA. This behavior
is related to influence of ionic strength of Na,CO, on PAA chain
resulting in strong negatively charged. In addition, the negatively
charged is not only affect nuclei agglomeration inside crystal matrix
but it is extended to influence layers that were adsorbed up to its
surface forming changeable adsorption values for each alternate
layers (Figure 3).
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Figure 3 Zeta potential measurements.A) PAA-FITC mixed with Na,CO,, B)
PAA-RG6 mixed with Na,CO,, C) PAA alone mixed with Na,CO, and FITC
with layers, D) PAA alone mixed with Na,CO, and RG6 added to layers.

Protamine/dextran layers showed different adsorption values
each layers confirming that the moieties of network matrix (inside
cavity and into the surface) play vital role in ions stability that could
affect adsorbed layer assembled into CaCO, surface and also that
was integrated into matrix. Hanafy* & Volodkin® investigated that,
responsiveness of MLNPs with desirable size range can be achieved
by ionic strength, pH of the solution, polyelectrolytes concentration
and type of integrated polyelectrolytes. The final layer of adsorbed
protamine/dextran showed good potential surface and adsorption
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in case of integrated PAA alone inside CaCO, matrix. While this
adsorption was influenced by integrated fluorescent molecules such
as rhodamine (RG6) and fluorescence isothiocyanate (FITC) attached
with PAA inside CaCO, matrix. However adsorbed dextran exhibited
in all case good adsorption compared to protamine.

In figure 4, Zeta potential measurements showed no good potential
with poor adsorption in case of adding PAA to CaCL,. Meaning that
PAA kept its chain with no more configurations for its hydrogen
protons giving less negatively charged. Although PAA-CaCL, was
mixed later with Na CO,, PAA is not answer ionic strength of Na,CO,
strongly compared to previous case. This evidence may be related to
reaction of PAA with Ca*" ions that could minimize de-protonation of
PAA. However adsorbed layer of dextran is still expressed on its good
potential surface in all case (Figure 4).
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Figure 4 Zeta potential measurements. A) PAA-FITC mixed with CaCL,, B)
PAA-RG6 mixed with CaCL,, C) PAA alone mixed with CaCL, and FITC with

layers, D) PAA alone mixed with CaCL, and RGé6 added to layers.

In figure 5, TEM photomicrograph showed semi spherical shape
with many rounded structures like nucleoli. As it is expected PAA
could form a hydrophilic corona. In this case, swelling coils of PAA
polymer on water makes it favourable for protection because PAA
adsorbs water many more times than its weight in alkaline pH.'
Diameters of MLNPs were ranged from 86nm-250nm. This means
that PAA has strong effect on electrostatic stability of particles
preventing their growth (Figure 5).*

|0

Figure 5 TEM photomicrograph showed morphology of nanoparticles and
their diameter.

In figure 6, MLNPs are readily up-taken by MCF-7 cells as
confirmed by transmitted light fluorescence images. After 24 h
of MLNPs incubation, aggregates of curcumin are still present
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inside cells in large quantity as demonstrated by an intense green
fluorescence. This evidence revealed that the nanoparticles (NPs)
size is an important parameter that determines the mechanism of
their cellular uptake. In particular, NPs smaller than approximately
200 nm are internalized typically via receptor-mediated endocytosis
whereas, for larger NPs other mechanisms are involved.” Meaning
that cellular uptake might increase in case of less diameter leading
to high accumulation of NPs inside cytoplasm and could penetrate to
other organelles such as nucleus and mitochondria'*. This surprising
observation suggests that the optimal size of CaCO, template strongly
depends on content of CaCO, matrix (Figure 6).

MTT assay allows assessing the ability of viable cells to reduce
the tetrazolium salt of MTT reagent by NADH to insoluble formazan
product, forming purple needle-shaped crystals in the cells. After
these crystals have dissolved in organic solvent, a purple colour is
generated.’ In figure 7, the intensity of the purple colour, measured
spectroscopically, reveals how many MCF-7 cells are viable's. The
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MTT assay conducted for encapsulated curcumin demonstrated a high
cytotoxicity of the drug on MCF-7 in both cases (Img& 2 mg/ml)
PAA. But 2mg/ml PAA showed higher reduction in growth of MCF-7.
This could reveal to high restored capacity of encapsulated curcumin
compared to 1mg/ml PAA. While there is no cytotoxicity could be
mentioned in both cases of free MLNPs with (Img & 2mg/ml) PAA.
From previous mention, cellular uptake behavior is largely influenced
by particle size, the control of diameter and shape of template plays an
important role to improve drug delivery carrier (Figure 7).'%"7

Infigure 8, PAA ions have strong effect on the stability of multilayer
nanoparticles. This could confirm that protamine penetrated pores of
CaCO,, has reacted with PAA inside CaCO, matrix. Meaning that
network matrix could be formed inside the cavity of CaCO,. Like this
matrix can provide good mechanical support in blood stream, and also
at long storage. Additionally, they can give active group for reaction
with encapsulated cargo molecule, increasing efficiency and drug
capacity (Figure 8).!%2!

Figure 6 Cellular uptake of breast cancer.A) Control MCF-7 breast cancer cell line, B) Free capsules with no fluorescent molecules, C) Encapsulated curcumin.
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Figure 8 Influence of PAA ions on stability of multilayer nanoparticles.
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Conclusion

Nanotechnology has solved the issue of low viability of curcumin
by encapsulating it inside nanocarriers. Poly acrylic acid (strong
negatively charged) is used to affect nucleation of CaCO, during
fabrication. Carriers that were produced, have small size and spherical
shape. No evidence for toxicity of PAA doped carrier was observed
as demonstrated by MTT assay on breast cancer cell line. Curcumin
has good influence on breast cancer cell line (MCF-7) after 24 hours
of incubation.
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