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consisting of a single layer of atoms. Most often, it is classified as 
either 2D allotropes of various elements or compounds consisting 
of two or more covalently/ionically bonding elements. In these 
layered structured materials, the atomic organization and bond 
strength along two-dimensions are similar as well as quite 
stronger than along a third dimension where they are bonded 
together by weak ‘van der waals’ interaction [1,2]. In nature, 
the organisation of nanofibers on the feet of geckos increases 
sufficiently the surface area of their feet so that they can easily 
walk upside down even on a slippery surface. It is interesting to 
note that carbon nanotubes first discovered by Iijima [3] were 
the rest isolated 2D materials. In Figure 1, we show some of the 
important members of this 2D family. The recent developments 
of two-dimensional (2D) materials have fostered a great deal of 
research interest since the first isolation of graphene [4-12]. The 
emergence of each new material brings excitement as well as 
puzzles in their characterization and physical properties. These 
2D materials offer an un-usual platform for predicting various 
heterostructures suitable for versatile applications.

 The properties of these materials are usually distinctly different 
from those of their 3D counterparts. Besides, these characteristic 
2D materials offer reasonable flexibility in terms of tailoring their 

electronic properties. Apart from that, there are indeed a class 
of new novel Dirac materials [13,15] and heterostructures in 2D 
available either theoretically or experimentally to verify some 
basic physics along with fabrication of nanodevices. In Figure 
2, we schematically present some of the materials possessing 
Dirac cones. Transition-metal dichalcogenides (TMDCs), another 
important key member of 2D family also have high potential in 
device application from the point of view of thin film [16]. It is 
highly encouraging that most of the 2D materials isolated so far 
are able to cover the entire range of the electromagnetic spectrum.

It is quite understandable that the experimental studies often 
take sufficient time as well as resources to predict and control the 
physical properties of 2D materials. On the other hand, with the 
help of minimal resources, the computational study, in particular 
the first-principles calculations [14], (apart from the stability of 
the proposed 2d structures) have taken a key role in engineering 
the band gap, scanning tunneling microscopy (STM) images, 
optical and magnetic properties. It will be important to compare 
[3] the predicted numerical results thus obtained from the density 
functional theory (DFT) to the experimental one. 
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Abstract

The physics of two dimensional (2D) materials is always intriguing in their own 
right. For all of these elemental 2D materials, a generic characteristic feature is 
that all the atoms of the materials are exposed on the surface, and thus it turns 
out to be comparatively easier to tune the structure and physical properties of 
the materials by surface treatments. The discovery of graphene have fostered 
an intensive research interest in the field of graphene like 2D materials such as 
silicene, germanene (hexagonal network of silicon and germanium respectively), 
stanene, borophene etc. really a zoo of 2D materials.

Introduction
2D Materials are commonly defined as crystalline materials 

Figure 1: An incomplete zoo of 2D materials.

Figure 2: 2D materials with Dirac cones consisting of various elements 
and compounds. Reproduced from [15].
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The most important of all these materials is the value of the 
band gap which can be further tailored by applying in plane stress, 
an external electric field, chemical functionalization and defects. 
For example, band gap opening in graphene is site specie for boron 
(B) and nitrogen (N) doping [17]. Even the optical properties are 
significantly modified [18,19] by B and N doping. N-B co-doping 
can enhance the static dielectric constant. Electronic density of 
states can be modified by the presence of disordered Stone-Wales 
defects in graphene [20]. Transition metal (TM) specially titanium 
at hollow site (Ti@HS)) can influence [21] significantly the optical 
properties in compared to pristine graphene. Besides, when the 
distance between two bilayers of graphene is greater than 5Å, then 
the system is equivalent to single layer [22]. On the other side, 
a theoretically proposed tetragonal graphene (T-graphene) also 
shows some interesting features in their electronic and optical 
properties [23-25]. Higher stability, large dipole moment along 
with high intensity Raman active modes are observed in N-doped 
T-graphene [26]. In Figure 3, some of the allotropes of graphene 
proposed so far have been depicted. Even the size and morphology 
of graphene quantum dot can influence the electronic and optical 
properties [27]. In particular, graphene plasmonics has been a 
rapidly emerging area for fast tunable lighting at the nanoscale 
[28]. Graphene and MoS2 have been routinely used in surface-
enhanced Raman spectroscopy (SERS) applications [29]. Besides, 
inorganic 2D materials have shown improved performance in 
lithium and sodium batteries [30].

Buckled 2D-Xenes (X = Si, Ge, Sn and so on) sheets have shown 
varied novel electronic structure ranging from trivial insulators, 
to semiconductors with tunable gaps, to semi-metallic, depending 
on the substrate and topological insulator [31,32]. Silicene, the 
first member in the 2D-Xenes family [33-38] beyond graphene 
reserves its own place. The magnetic properties can be tailored by 
chemical functionalization, such as hydrogenation and introducing 
vacancy into the pristine planar silicene [39] and silicene/
graphene hybrid [40]. The importance of shape dependence and 
optical anisotropy properties in silicene nanodisks establishes 

that a zigzag trigonal (ZT) possesses the maximum magnetic 
moment [41]. Besides, diamond shaped (DS) silicene nanodisk 
shows the highest static dielectric constant [41] having no zero 
energy states [42]. Further, the optical properties of planar 
silicene can be significantly influenced [43] by phosphorous (P) 
and aluminum (Al) in the silicene network.

Germanene, third member of these 2D family places its 
impression due to its high spin-orbit coupling and its properties has 
been compared with silicene and graphene both experimentally 
and theoretically [23,44-46]. The site dependent adatoms arsenic 
and gallium [47] and beryllium [48] in the germanene network 
can significantly modify the electronic and optical properties. 
Aluminene, 2D allotrope of aluminium has been demonstrated 
as highly whole doped graphene [49]. In recent years, borophene 
[50,51] and stanene [52,53] have been emerged as promising 2D 
materials for device application.

These 2D materials being ultra-thin possess high degree of 
anisotropy and chemical functionality. They are highly diverse 
in character in size, morphology along with biocompatibility and 
degradability. Because of these essential properties, scientists have 
been highly motivated to use these novel and emerging robust 2D 
materials in drug delivery systems, imaging, tissue engineering, 
and biosensors [54]. They are probing the possibility to tailor the 
physiological interactions of biomedical nanocomposites with 
living tissues. In fact, the complexities involved in variable particle 
size and shape, impurities from manufacturing hold the essential 
key in this research.

Conclusion
To conclude, the unconventional and multi-functional features 

associated with these novel 2D materials will trigger further 
research and will hopefully overcome the constraints appeared 
along with for the nano-device application. Thus, at this stage 
of research, it is highly desirable that further experimental 
investigations should be pursued for bulk manufacturing of pure 
and defect free 2D materials at a reasonable economical price 
with a suitable band gap required for functioning in a chip. In this 
regard, the powerful theoretical predictions from various DFT 
computations of 2D materials with proper electrical composites 
might be helpful to design the pavements for devices. In fact, this 
is indeed the right time to look for novel heterostructures beyond 
graphene for fabricating faster, smaller and smart nanoelectronics 
devices required essentially for the next generation.
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