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Introduction

The analytical solution of Dirac equation plays a vital role in
relativistic quantum mechanics and solving the Dirac equation
to obtain the bound-state energies for with different potential
models using various methods for example Nikiforov-Uvarov
method, The Laplace transform approach (LTA), factorization
method and so on [1-6]. The quantum algebraic structure based
to the ordinary CCRs in both of SP, HP and Dirac picture (the
operators are depended on time),as (c =/ =1):

[xi,pj:I = I:xi(t),pj(t)] = ié'ij and I:xi,xj:I = I:x,.(t),xj(t)} = [p,,pj} = [p,(t),pj(t)] =0
1)
Very recently, non-commutative geometry plays an important
role in modern physics and has sustained great interest, for
example [7-21] and our works in this context [22-47] in the case
of relativistic and nonrelativistic quantum mechanics. The new

quantum structure of NC space based on the following NC CCRs
in both of SP, HP and Dirac picture respectively, as follows [7-25]:

{quﬁj} = l:)?i(t)fﬁ/(t)il = iﬁij,{fq *x/:| = {fc,.(z):k)%j(t)} =i0, and [iz:iz]} = |:ﬁ,-(t)ff7/-(t)il =0

(2

The very small parameters 6" (compared to the energy)
are element of antisymmetric real matrix and (*) denote to the
new star product, which generalized to two arbitrary functions
(f(x) »f(@)and g(x)>2(R)0 F(2)2(3)=(r)(x)
instead of the usual product (fg)(x) [17-27]:

+0(6?
= (#")

(3)

The new term (- % 9‘”62]’ (x) a’v‘g (x) ) is induced by (space-

space) noncommutativity properties. A Bopp’s shift method can

be used, instead of solving any quantum systems by using directly
star product procedure [18-33]:

falomms ade @

The new three-generalized coordinates (fc=)?1,jz=fcz,2=fc3) are
given by [22-34]:

F0)(3) = (26) () = exp(5 0" 0705 () (x.0) = (fe—20" Lo

a &, O3 ~ 0, 0> s _ 05 05,
R T N A A A R A A T AN
(5)

Where (x,y,z) and pr,py,pz) are three-usual coogdinates
and momentum ,which allow us to getting the operator 7~ on NC
three dimensional spaces as follows [22-33]:
0.
with LO=LO +L O _ +L O and (@-:ij
x 12 Yy 23 z 13 L)

(6)

In recent years, the study of PH potential has attracted a lot
of interest of different authors, it have the general features of the
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true interaction energy, inter atomic and dynamical properties
in solid-state physics and play an important role in the history of
molecular structures and interactions; this potential is considered
as an intermediate between harmonic oscillator and Morse-
type potentials which are more realistic anharmonic potentials,
furthermore, the PH potential is extensively used to describe the
bound state of the interaction systems, and has been applied for
both classical and modern physics [5,6]. This work is aimed at
obtaining an analytic expression for the eigenenergies of a MPH
potential in (NC: 3D-RS) symmetries using Bopp’s shift method to
discover the new symmetries and a possibility to obtain another
applications to this potential in different fields. This work based
essentially on our previously works [22-43], it was studied in our
works [34,35] in the case of nonrelativistic case. The organization
scheme of the study is given as follows: In next section, we
briefly review the DE with PH potential on based to [6]. Sec. 3
is devoted to studying the MDE for MPH potential by applying
Bopp’s shift method. In the fourth section and by applying
standard perturbation theory we find the quantum corrections of
spectrums of the n" excited states in (NC-3D: RS) for relativistic
spin-orbital interaction. In the next sub-section, we derive the
magnetic spectrum for MPH potential. In the fifth section, we
resume the global spectrum and corresponding NC Hamiltonian
operator for MPH potential. Finally, the important results and the
conclusions are discussed in last section.

Review of the Dirac Equation for PH Potential

The Dirac equation for a spherically symmetric potential in
3-dimensional reads for a single-nucleon with the mass of M
and relativistic energy £ moving in an attractive scalar potential
S(r) and a repulsive potential ¥V (r) in natural units [6]:

(apt BM+S(r) ¥ (r.0.6) = (E-V(r)) ¥ (r.0.9) )

0 o L, 0 01
Here (a = B = ),o = )
i |, 0 0 L,) 1o

0 —i 1 0
o= and o =
2 i 0 300 -1
while the PH potential V(F) for the spin symmetric and the
pseudo-spin spin-symmetry [6]:

are the usual Dirac matrices

2
b

V(r)=D LA (8)
ol r 2

Where, D0 and » are two constants related to the

dissociation energy of a molecule and an equilibrium distance,
2 2
, b= DOrO+ and ¢ = —ZDO, thus,

the corresponding ordinary Hamiltonian operator H , can ban
be expressed as: p

H = (ap+B(M+S(r)) +V (r) ©)
The spinor ¥ (r,9,¢) can be written as [6]:

respectively while a = Doro_

L) | 1 Fa(r)Tn(0.9)

gulr)) LG (r)Y](0.9) (o)
n nk Jm\*¥

‘Pnk (}",9,¢) =
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Where, F (r) and G (r) are the upper ‘and lower
components of the Dirac spinor, lem (0,4) and lem (0.9) are
the spin and pseudo-spin spherical harmonics while & (lg) is

related to the total angular momentum quantum numbers for
spin symmetry / and p-spin symmetry / as [6]:

) ~(1+1) i (J+1/2)(51. Py tc). j=l+%, aligned spin (k(0)

) +if j:l+%,(p1/2,d3/2,etc), j:l—%, unaligned spin (k)0) (11)
: - if -(j+1/2),(sm,p3,2,ezc),j:i%, aligned -spin (k(0)

) +H(7+1) it j:l~+%,(p1/2,d3/2,etc), j=l~+%, unaligned- spin (k)0)(12)

The radial functions (Fnk (r), G, (r)) are obtained by solving
the following differential equations [6]:

i M(ii)

k(k+1
_%—[M+Enk—A(r):”:M—E +5(r)J+ dr_\dr_r F (r)=0

d2

dr*

] (13)

dL(’)(il)
d—zf@{MwnkfA(r)][MfE,,ﬁz(r)}id’ dr_r G (r)=0

ar M+E,, —3(r)
L (14)
The bound state solutions of the PH potential for the spin
r
symmetric case obtained in the exact spin symmetry - 0
r

and then the energy eigenvalues depend on n and /. According
to LTA and asymptotic interaction method, which was applied in
[6], the upper component Fnk (r) of the Dirac spinor gives by:

_?

. (r) = Ne'e 2 B (—n,v+%,rzj (15)

1

Where, N and 11’71(—n,27/+1,25r) are the normalization

constant and the confluent hyper-geometric functions, the

relativistic positive energy eigenvalues with the PH potential
under the spin-symmetry condition is obtained as [6]:

[

UD—(2D0+E—M)\/M+E—C - \/(2k+1)2+4D02r02(M+E—C) = 4(n+1/2)
' (16)

For the exact pseudo-spin symmetric case, the lower Gnk (r)
component of the Dirac spinor [6]:
G, (=R" 2 F (7;1,‘/%,;3] with v (v+1) = k(k + 1) + (M+E-C) D r.* and p* :%(wac)
' an
Here N denote to the normalization constant and the
relativistic negative energy eigenvalues with the PH potential
under the pseudo-spin spin-symmetry condition is obtained as

[6]:
7}’[0)—(2D0+E7M)x/E7M7C - \/(2k+1)2+4D02r02(M—E+C) = 4(n+172)

(18)
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It is well known that, the generalized Laguerre polynomials

Lgp)(x) can be expressed as a function of the confluent hyper-
geometric functions as:
F(n+ p+l)

(»)
L (x) B n!F(p+1) (19)

171 (7n,p+1;x)

Which allow us to rewritten the upper component Fk (r)
n
and the lower G . (r) component of the Dirac spinor for the spin
i
symmetric case and the pseudo-spin spin-symmetry, respectively:

r[wi) (o r[vé]
2 v+l 5 2 vl
r e r e

2
T n+v+=
2

vi—

F 4l

7/4r2 ( 1

Fnk (r):Nn! )(rz) and G”k (l‘):/\_/n!

T n+v+=
2

(20)

NC Relativistic Hamiltonian Operator for MPH
Potential
Overview of Bopp’s shift method

In order to obtain the MDE for MPH potential V(7), we
replace both ordinary Hamiltonian operator H(p,.,xi), ordinary
spinor ‘P(;) and ordinary energy E by NC Hamiltonian
operator I:I(f),,fci), new spinor ¥ (?) and new energy Enﬁph
and the ordinary product will be replace by new star product *,

respectively. Allow us to writing the new MED for MPH potential
as follows [22-34]:

A (p%)* ¥ (7)= Enc_ph@(?) (21)

It is worth to motioning that the Bopp’s shift method permutes
to reduce the above equation to simplest the form:

ne—ph (iji"%i)y/(;:):E l//(f) (22)

Where, v (7) is a solution of the Dirac equation and the new

ne—ph

operator of Hamiltonian prh (fa,- ,fcl.) can be expressed in three

general varieties: both NC space and NC phase (NC-3D: RSP),

only NC space (NC-3D: RS) and only NC phase (NC: 3D-RP) as,

respectively [35-44]:

PN n 1- N 1

H, . (p%) = H[ bi=p—0,7%5=5—0;p fj for NC-3D: RSP
(23)

(131-,)?1.) = H(ﬁi:pi;fci:xi—%ﬁypj) for NC-3D: RS (24)

ne—ph

A . 1- .
- (pi,xl.) =H (pi:pi—gﬁ,-j ;xj,xi:xi) for NC-3D:RP (25)
In recently work, we are interest with the above second variety
and then the new modified Hamiltonian # (f)l.,fci) defined as
nc—ph

a function of X = x —59_,]3' andp =p:
i i /) i i

e (pis%) = aP + B(M + S(7) +V (7) (26)
Where the MPH potential ¥ (#) is given by:
. a b
V(r):A—z—;-rc (27)

The Dirac equation in the presence of above interaction ¥ (#)
can be rewritten according Bopp'’s shift method as follows:

(aP+BM+S()) ¥ (r.0.9) = (E-V(7)) ¥ (r.0.6) (28)

Copyright:
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The radial functions (F (r),G . (7)) are obtained, in the
nK n,
absence of tensor interaction, by solving two equations:

[%4—%} Fnk (r)= |:M+Encfph _A(’;)} Gnk (r) (29)
LG, 0 =[r )o@

with

A(F) =V (7)-S(7)

eliminating . (r) and G, (r) from Egs. (29) and (30), we can

and (7)) =V(#)+5(7),

obtain the following two Schrodinger-like differential equations
as follows in (NC-3D: RS) symmetries:

d*  k(k+1) . . a
l:(hz_rl_(M+Enc—ph ~A(F))(M=E,ep +2("))} F (r)= ?31)
d* k(k-1) . 5 _
er - —(M+Em,_ ph—A(r))(M—Enc_ ph+2(r))} G (r)= (232)

After straightforward calculations one can obtains the two
terms in (NC-3D: RS) spaces as follows:
% = i+i4ﬂ(:)+0(6?2) and -2 é—L3IZ(:)+0(92) (33)

F 2o rro2r

Which allow us to writing the MPH potential ¥ (#) as follows:

I},pm_ph(r,@,a,b): a_b LO for spin symmetric case
N _a b o2
V() = - tc+
r ~ =
" Vs pert—pi (r,@,a,b):(%—%}L@for p-spin symmetric case
r r

(34)
It is clearly that the star product inducing the non-
commutativity is replaced by the usual product plus non local

corrections V (r.©,ab) and V. (r,©,a,p) in the
2p

1 pert—ph ert—ph
scalar potential V (f) . This allows writing the modified Dirac
equation in the non-commutative case as an equation similarly to
the usual Dirac equation of the commutative type with a non local
potential. Furthermore, using the unit step function (also known

as the Heaviside step function or simply the theta function) we
can rewrite the MPH potential to the following form:

. a b N N
v(7)= 2o res Q(E"C*Ph ) Y pert-pi (r0.a.)+0 (7E"C’””) - (r©.ab)
(35)
Where
1 f 0
o(x)-1 ¥ (36)
0 for x(0

We generalized the constraint for the pseudo-spin (p-spin)
symmetry (A(r) =V (r) and 2(r) = C,m = constants
which presented in [6] into the new form A(7)=¥(7) and
(7)) = C = constants in (NC-3D: RS) and inserting the potential

ps

V(f) into the two Schrodinger-like differential Eqs. (31) and
(32), one obtains:
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2
r r

{ d? k(k+1)
dr r?
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o2

_(M+Enc,p,,)(M E,._ ph+é’ps)_{a_b+c](M—Emph+éps)—(a_b]]:@)(M—Encph+éps):| F (r)=0 (37)

b

> k(k-1 A b R
er_ (2 ) (M+E,_ ph)(M—EncpﬁCps)—(az—“] (M=E,o_ €, H [a_]LG(M E,+C,, )} G (r)=0 (38)

r e r

and two similarly equations obtained by E—)i. It's

clearly that, the additive new parts l}l ) h(r,@,a,b) and
pert=p

(r,@,a,b) are proportional with infinitesimal parameter
2 pert—ph

©® , thus, we can considered as a perturbations terms. Our aim is
to derive the energy spectrum for a moving charged particle in the
presence of a potential given by (35) analytically in a very simple
way.

The Exact Relativistic Spin-orbital Hamiltonian and the
Corresponding Spectrum for MPH Potential in (NC: 3D- RS)
Symmetries for n" Excited States for One-electron Atoms

The exact relativistic spin-orbital Hamiltonian for MPH
Potential in (NC: 3D- RS) symmetries for one-electron
atoms

The results (34) can be rewritten in a more accessible physical
form, we replace both L® and LO by SL and SL and then the

two perturbative terms 14 (r,@,a,b) and V (r,@,a,b)
1 pert—ph 2 pert—ph

for the spin symmetric case and the pseudo-spin spin-symmetry,
respectively can be rewritten to the equivalent new form for MPH

potential:
(r,@,a,b) =0 [i—i].—é

23

(39)

(r,@,a,b)
pert—ph
(r,@,a,b) can be rewritten to the following new

(r.©,a0) =0 [i—i]u and

P2

~at

1pert—ph 2 pert—ph

Furthermore, the above perturbative terms 171

and V.
2 pert—ph

equivalent form for MPH potential [35-47]:
(r,@,a,b) 76[—7i](‘72722

4
1 pert—ph 4,

=2 N
) ] and V.

(r,@,a,h) ® b ‘7271:}7:5';2
2 pert—ph 4 2,3

(40)
To the best of our knowledge, we just replaced the coupling

spin-orbital (pseudo spin-orbital) SZ and SL by the two

. (=2 =2 =2 (=2 =z =2 .
expressions: 7 J -L"-S | and 5 J -L°-S |, respectively,

(pit), 05,1,

§%and Jz) forms a complete of conserved physics quantities and

in relativistic quantum mechanics. The set ( # .
ne—p

the spin-orbit quantum number k(l?) is related to the quantum
numbers for spin symmetry / and p-spin symmetry / as follows

[6]:
£ (+1/2),(s,0.p3/20etc), j=I —%, aligned spin (k(0)

1;25+(l~+1) if (j=l~+%),(p1/2,d3/2,etc),j=l~+%, unaligned spin (k)0)

(41)

P2

k=—(I+1) if -(j+1/2),(s1/2,p3,2,etc),j:l+%, aligned spin (k(0)

k=
ky=+l if [jzlJr%j,(pm,d3/2,etc),j=1—%, unaligned spin (k)0)
o o (42)
With & (k-1)=17(7+1) andk(k-1)=1(1+1), which allows
s » (kiky) and
Flw_ph (121,122), for MPH potential, respectively, in (NC: 3D-RS)

symmetries as:

us to form two diagonal (3x3) matrixes A -

P S _1
(Hm,ph)”(kl):kl@[%—i] if -(j+1/2),(s,/2,p3,2,ezc),j:1—5, aligned spin (k(0)

3
rt 2r

(ﬁm,ph) (k, ):/Eze)[i—i] i ( =i +1j,(p.,z,d3/2,ezc), J=+1, unaligned spin (k)0)

2 4 2 2

(43)
(I:waph)n (kl) = kl(D[i—i] if —(j+1/2),(s]/z,p3/z,etc),_/‘ = l+%, aligned spin (k(O)

. . 1 1 . .
(A,- ph) (k> )=k,© [——2—] if [ j:l+5],(p1/z,d3/z,etc),jzl—? unaligned spin (k)0)
r

r3
(Aypn), =0 (44)

The exact relativistic spin-orbital spectrum for MPH potential
symmetries for n" excited states for one-electron atoms in
(NC: 3D- RSP) symmetry

In this subsection, we are going to study the modifications to

the energy levels (En (@,El) ,E (@,Igz) ) for (-(j+1/2)

c—per:d ne—peru

- 1
,(51,2,p3/2,etc) ,j=1+ 3 aligned spin k(0 and spin-down) and (
1 -1
5 (pl/z,dm,etc), j=1- 7un aligned spin k)0 and spin
up), respectively, at first order of infinitesimal parameter ® , for

j:i+

n" excited states, for the spin symmetric and the pseudo-spin

spin-symmetry obtained by applying the standard perturbation

theory, using Egs. (20) and (35) as:

+ N .
19, (10BN O Eve Vs port- i (1@ WO(=E - Pyt |(7-0-0.0) ¥, (70.9)r 2 drd
= 0(Ese )T sy i @0 0) g ()0 (Ee s ) 16" (4)V s e (- ©..0)Gi ()
(45)

The first part represents the modifications to the energy

levels for the spin symmetric while the second part represent

the modifications to the energy levels (£ (0.4),
Em_iper‘u (@ kz)) for the pseudo-spin spin- symmgtrf then we
have expllc1tl~y: i * s
et (OR1) = =0 (B ) G (r>( E ‘zrs]G,,,;u)dr
(46)
i a b
E e (0F) = 0(E, ) B, 16 (7 >[/2rs Jc,,m)dr
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Now, we use egs. (20), (40), (41) and (42) to obtain the explicit expressions for modified energy eigenvalues (Enc? o (G),lgl),
(G),kz) ) for MDE with MPH potential under the pseudo spin symmetry conditions obtained as: e

ne—per:u

2

nc—per:d (

r(v+fj [ ()
- 2 +00 N B r2 V+
®akl) = _6( ne— Ph)k® Nn'i J’ r2 +2€ “ L 2 (r2)

[a—b]dr (47)
F[n+v+%) 0

nc—periu

) [ ol ]
(0.k)=-0(-E, ,;)k0 Nnsz3 [ g’ L( 2)(r2) [“—b]dr (48)
F(n+v+5) 0

. . 2
And using the transformation X = r~, we have:

| F(V+5j o 1 [ (Hl) ’ b
~ ~ ~ a
En( per:d (®’k1) = _5 9(_Enc7}7h)k O Nnl———=~ .[ X 26 # L 2 (X) — |dX (4’9)

1 ’ 3 n 2 3
el 0 X el
F(n+v+2j 2X2

| F(v-r%) o1 (Hlj ,
(@,EZ)E—EQ(—E,,C,M,)@@ 25| ] x 2oy Y (x| | -L—2lax  (50)
3 xr 3
F(n+v+2j 0 | 2X2

2

; 1 F(vﬁ—fj
ne—per:d (®’k1) = _50( ne— 17h) k© Nn'i (H*Ph(DO’VO’Vl’n)+T2*[’h(D0’r0’vl ’n))
r n+v1+f]
2
(1)
2
y 1 l"(vﬁ-f
ne—perau (®sk2) = _5 9( ne— ph)k 0] Nn'i?’ (Ll—ph(DOJOaV29n)+L2—ph(D0=r05V2 ,n))
F(n+vl+5j

Where, the four terms 7;7ph (Do,ro,v1 ,n), Tﬁph (Do,ro,vl,n) , L (Do,ro,vz,n) and L27ph (DO,rO,VQ,n) are given by, respectively:

2 1-ph
1 2 1 :
i Vl_é —HX (V1+;) b V1—2 —uX (v1+;)
]ifph (DO,V(),VI,”) =a j X 28 Ln (X) dX’Tziph (DO’rOavlan) = _E J X e Ln (X) dX
0 0
(52)
5 1 2 1 2
+00 vo—— _ X (v2+*) b +oo o (v2+*)
Lliph (Do,ro,vl,n): al X 2eH L, ? (X) dX ansziph (Do,ro,v],n) =3 [ xVameenX L2 (X) ax
0 0
Now we apply the special integral [48]:
l+a+p a+,3
F 1+a —
® a+a I(l+a+p)(1+a+k k ( 2 )’ 2 2
F o) o (a2) 1 ()i = ( k'kff) l( ) ) a* B (53)
0 : .F( +0{) dhk (]_h)1+a Bl+a+/j
h=0
4a,a,h 1+A
Where 4° = %, B=s+ al-;az 1+7h' R(s+al+Taz))0, a1>0, a2)0 and R(a+ﬂ)) —1, which allow us to obtaining
1-h -

T (Drvn)andT (Drvn)as:
l*ph 0s70°Y1> 27}7}] 0s70-%1»
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B _ 2
r vl—3 r E+vl+n " F(i‘/l 3/2),1+V1 3/2;V1+i;i
” 2) 2 d 2 2

TH)h (DO,VO,Vl,n) =D e —dhn 3 (54)

n“I'l —+v; (]_h)V1+EBIV1—3/2

h=0
_ 2
Dy (v )F(%+vl+nj p F(%)’HV]z 1;1/1 +%;i2
”
T (Dyryovyon) = ——2° B (55)
2-ph \T070001 2 2T 3 " 3
n! E-H/l (l_h)Vl'i'EBVl
h=0
- . 4h 1+h
Here v, (vl+1) =k (k +1)+ (M+E-C) Doro2 , 4 = and B=pu-1+——, thus, the new factors

(1-h) 1=h

L (Do,ro,vz,n) =T (Do,ro,vl—wz,n) and L (Do,ro,vz,n) =T (Do,ro,vl—wz,n) are determined by the following results:
—p -

1-p ph —ph
_ _ 2
F(vz—%jl"(%+v2+n) 7 F(Vz 23/2}1+V2 23/2;1/2+%;A—2
L1—ph (Do,ro,vz,n) - D0r072 23 ] 3 £
n! F[E"'sz dh (l—h)vz+EBIV2_3/2
h=0 (56)
_ 2
+2 F(V2)F(E+V2+n) n F(QJ’HVZ 1;"24‘35[47
L (o)< 25 ) P
2-ph 057052

2 3 n 3
n!z F[E"'Vz) dh (l—h)vz +§BV2
h=0

Where, v, (v2+1) = Igz (lg2 +1)+ (M+E—C) Doroz, substituting Egs. (54), (55) and (56) into Eq. (51), we obtain the modifications

to the energy levels [Enc_p)r'd (@,IE]),EM_WW (@,lgz) ) produced by relativistic spin-orbital effect under the pseudo-spin symmetry

conditions. Now, the energy levels (Encﬁm_d (@,kl),E (G),k2)) produced by relativistic spin-orbital effect under the spin

nc—peru
symmetry conditions, can be determined by means of same procedures as before, and to avoid repetition we just make the following
steps:
NNk >k.k >k ad 0(-E, ,)—>-0(E, ) (57)

This implies that (Emfpml (@,kl) ,E (@,kz) ) can be expressed as, respectively:

nc—per:u

2

1"(1/(1{2 )+%)

r(nw(kz)%j

1
(0i) =0 (Evepn) | Nn (72 (Do (ks )} 5 Doty (ks v

ne—per:d

(58)
1"(1/(1(1 )+%) 8

(lﬂ—ph (DO 7o v(ky )=”)+L2— h (Do 7o (ky )JZ))
F(n+v(k1 )%] P

0(E,. ) k,©| Nn!

1
E’lC*pCVllt (®’k2) = E

Having obtained the exact modifications to the energy
( (0,6,)) and (E (0.4),
ne—ph c—per:d

the energy levels under the pseudo spin symmetry conditionsand £ (©,k,)) under the pseudo spin symmetry conditions

. s . o : neder i, X .
spin symmetry conditions are negative and positive, respectively. ~ and spin symmetry conditions, respectively, for " exited states,
produced by NC spin-orbital Hamiltonian operator, we now

T}},? exa.ct relativistic magnetic spectrum for MPH potential ., qider another interested physically meaningful phenomena,
for n tex.c1ted states for one-electron atoms in (NC: 3D-RS)  \ypich also produced from the perturbative terms of PH potential
symmetries

The negative and positive signs of the coefficients 0(—Enc_ph)

0.k),E
and H(E ) are necessary to ensure that the modifications to 1)

levels (En

ne—per:u ne—per:d
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related to the influence of an external uniform magnetic field, it’s
sufficient to apply the following two replacements to describing
these phenomena:

-2 +2 -2 +2 - -2 +2 ) _ .
D, |- L - gD | -2 |BL or yp | -"|BL
P2 o2 P23

and © > ys» (59)

Here y is infinitesimal real proportional’s constants, and we
choose the magnetic field B = Bk, which allow us to introduce
the modified new magnetic Hamiltonian H (r,a,b,;{) in

mag

(NC: 3D-RS), as:

2w ¥

Iz 7 BL

H,  (Dyrz) =D | =14
ol 2/ )|BL  for

_ph

for pseudo spin symmetry

spin symmetry (60)

Here (—gﬁ) denote to the ordinary Hamiltonian of Zeeman

effect. To obtain the exact NC magnetic modifications of energy

mageph (Z,n,ﬁz,DO,ro) and Emag_th (;(,n,m,DO,rO) for modified PH

potential, under the pseudo spin symmetry conditions and spin

symmetry conditions, respectively, which produced automatically

by the effect of A . (r,DO,rO,;(), we make the following two
m-p.

simultaneously replacements:

121—>ﬁ1 k >m and ©—yB (61)

Then, the relativistic modification

(;(,n,rh,DO,ro) and

magnetic

mag-ph oh (;(,n,m,DO,ro) corresponding

n" excited states, in (NC-3D: RS) symmetries, can be determined
from the following relation:

mag

) 1 B F(vl+5) i
(l,n,m,DO,rO) = ) H(—Em_ph))( B Nn!ﬁ (Llfph+L27ph) m
I n+vl+7]
2
F(v(kl)+%j
3
l"(n+v(k] )+§)

Where, m and m denotes to the angular momentum quantum
numbers —/ <m <+l and —/ < m < +/ , which allow us to fixing
(21~ +1)and (21+1) values, respectively.

mag-ph

);{B Nn!

‘ne—ph

(l,n,m,DO,rO) :%H(E (quph'*'llz,ph)m

(62)

E
mag-ph

The Exact Modified Global Spectrum for MPH
Potential in (NC-3D: RS) Symmetries for One-Electron
Atoms

th . . .
Let us now resume the n  excited states eigenenergies (

oy (O Kz D) E (O zmir.Dy))  and
En d (@, kl , X,h,m, VO,DO ), Emiu (G),kz,;(,n,m,ro,DO) ) of
MDE corresponding the pseudo spin symmetry conditions and
spin symmetry conditions, respectively, at first order of two

parameters (@,;() for MPH potential in (NC: 3D-RS) symmetries,
on based to the obtained results (51), (58), and (62), in addition
to the original results (18) and (20) of energies in commutative
space, we obtain the following original results:

Copyright:
©2018 Maireche

2

1 F(Vﬁ-éj
£ - -20(-E Fn! 2| (T ) (RO+ 1 Bi)

wepd ~ L i) M(

2

1 y F(VI +§) :
=E . +50(-E, )| Nn! (1T ) (0+ 7 Bin)

o nhy F(n-f—vl +é)
2 (63)
3 2
1 l"(v, +5J
Enc—d = En/cl - 5 0 (E"C’Fh) Nn! (LI*P}' +L2—ph ) (k1®+/’( Bm)
F(n+v1 +7j
2
3 2
F(vl +Ej
ner—u = Enkz + 5 ¢ (E"C’Ph) Nn! 3 (Llfph +L2—ph ) (k2®+Z Bm)
F(n+vl +—)
2 (64)
Now, it is important to constructing the Hamiltonian operator
H for MPH potential on based to previously obtained results.
ne—pi

Naturally, to consider the first term in the modified Hamiltonian
operator represents the kinetic energy and the potential energy
in ordinary commutative space H  of the fermionic particle

oh (k1 ,kz) or

vah (lgl ,lgz) represents, the induced spin-orbital parts for the

pseudo spin symmetry conditions and spin symmetry and the last
term is the modified new magnetic Hamiltonian # (rab,x):
e

P N
which presented by eq. (9), the second term Hm

ag —mt

2 . rfz r+2
H.vnfph(kl’k2)+ZD0 074_ 0

] BL for pseudo spin symmetry

. N o2
=H +
ne- ph ph PR
Hw,ph(kl Jey )+ Dy ”074_’073 BL for spin symmetry
rt2r (65)

In this way, one can obtain the complete energy spectra for
MPH potential in (NC: 3D-RS) symmetries. Know the following
accompanying constraint relations:

a. The original spectrum contains two possible values of
energies in ordinary three dimensional spaces which presented
by Egs. (16) and (18),

As mentioned in the previous subsection, the quantum
numbers m and m satisfied the two intervals: -/ <m < +/
and —I<m <+, thus we have (2/ +1) and (2/+1) values,
respectively,

~ 1 ~ 1
We have also two values for ( j =/ +E and j=1 _5) and (
1 1
j=1+ 3 and j=1/- E) for pseudo spin symmetry conditions

and spin symmetry. Allow us to deduce the important original
results: every state in usually 3-dimensional spaces will be
replacing by 2(27+1) and 2(2/+1) sub-states.

n-1
Then the degenerated state can be take 2> (21+1) = 2n" values

i=0
in (NC: 3D-RS) symmetries. Finally, we resume our original results
in this article, the first one is the induced pseudo-spin-orbital
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and spin-orbital Hamiltonian operators (1-:[307 , (lgl ,122) and ,Enciper:u (9,/;2) ) and (Enc—per:d (®5k1) , Enkpeyu ( ,kz) )
o (kl,kz)) and corresponding eigenvalues (E persd (@ kl) respectively as:
G N\ .Gi(r) i
_sv ph [ kr 0 ¢)] ne— perd(® kl )[l kr( )lem(9’¢)j
2 -~ 2 G Gil7r) i
so—ph (kl’kZ)\Pnk (7,9,¢) = (H_so ph 2)[1 kr j Enc per u G) kl )[l k( )lem(93¢)j (66)
2 G
H_so ph ( e’¢)] 0
. F E
(Hwh)lgkl)[ 0, 00) b0 )5 0)
A F;l r
o Uik )W (r0.9) = 4(H,, )22(k2 )[ ulr)y (9,¢)j N (W )( kr( )Y}m(é’,qﬁ)] (67)

(-l

eigenvalues E ( n,m,D, r)andE
8 mag-ph Z>1,m,Eol ma;

ZDO r072 r0+2 B_Z 0
o2 0 E:

It is worth to mention that (in the limit ® — 0 ) we obtain the
commutative result of the relativistic negative energy eigenvalues
and positive energy eigenvalues under pseudo spin symmetry
and spin-symmetry in addition to the relativistic Hamiltonian
operator for PH potential.

(r,a,b,;() Y . (r,9,¢) =

mag—mt n r

~

Concluding Remarks

In this paper we have performed the exact analytical bound
state solutions: the energy spectra and the corresponding NC
Hermitian Hamiltonian operator for three dimensional MDE in
spherical coordinates for MPH potential by using Bopp’s Shift
method and standard perturbation theory. It is found that the
energy eigenvalues depend on the dimensionality of the problem
and new atomic quantum numbers (j = ] +1/2,j=1%1/2,
§=%x1/2,1, I,m and m ) in addition to the two infinitesimal
parameters(® and y ), and we also showed that the obtained
energy spectra degenerate and every old state will be replaced
by 2(2l~+1) and 2(2l+1) sub-states under the pseudo spin
symmetry and spin symmetry conditions, respectively, for n"
exited states.
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The second original results are the induced the modified new magnetic Hamiltonian operator H
mag—

- (r,a,b,;() and corresponding

oh (;(,n,m,DO,ro ) , respectively as:

F"k(r)yjlm(g,¢)

F(r)Y;(0.9) Ennagepn (2,1 Do:10) p
_Gn,;(r)
r

' (68)
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