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Abstract

It has been seen that a vector field decomposition method called the Helmholtz Hodge 
Decomposition (HHD) can analyze scalar fields present universally in nature. It aids 
to reveal complex internal flows including energy flows in interference and diffraction 
optical fields. A gradient field defined in a region R, can be separated into solenoidal 
and irrotational components. HHD applied onto Magnetic Resonance Elasticity data 
can also aid to retain the curl field, while revealing the tissue elasticity in such medical 
measurements. 

Keywords: Helmholtz hodge decomposition; Phase gradient; Magnetic resonance; 
Elastography

Abbreviations: HHD: Helmholtz Hodge Decomposition; OAM: 
Orbital Angular Momentum; MRI: Magnetic Resonance Imaging; 
MRE: Magnetic Resonance Elastography

Introduction
A vector field decomposition technique namely Helmholtz 

Hodge Decomposition (HHD) allows the field to be segregated 
into a solenoidal (divergence-free part) and an irrotational (curl-
free part) [1-9]. Many problems in electromagnetism, MRI [6], and 
fluid and smoke simulations [7] use this decomposition method to 
visualize real-time data. HHD aids to represent the homogeneous 
data explicitly by extracting the critical points like sources, sinks 
and vortices. It had been applied to polarized vector fields and 
to reconstruct phase for wavefront distortions. We used HHD on 
scalar optical fields and studied the Orbital angular momentum 
(OAM) in diffraction optics that has been reported [10-15]. 

An identity relates the OAM in an optical field to its phase and 
amplitude distribution [16]. The vectorial nature of the fields is 
disregarded in such cases. We had shown the usefulness of the 
HHD in analyzing all such fields, including the ones obtained in 
interference optics where a single state of polarization (SOP) is 
assumed. We constructed a phase gradient field ϕ∇  from a scalar 
field [17,18] by using the relation

		  *Im[ ]
I

ψ ψ
ϕ

∇
∇ = 		  (1)

Where ψ a scalar is field resulting due to interference or 
diffraction and I ψ ψ∗=  is the intensity distribution. 

φ∇  that directed in the local propagation vector direction 
normal to the phase contour surfaces carries all the features of 
the wave. The phase gradient field in a singular beam has a non 
zero curl [19-27]. Hence, the solenoidal or the curl part that is an 
explicit component of HHD carries the circulating energy features 
of the field. The irrotational part reveals solely the spreading of 

energy, whether diverging or converging.

It is worth noting that different research groups have used 
different names (Helmholtz, Hodge, Helmholtz-Hodge or Hodge-
Helmholtz) for this decomposition. The Helmholtz decomposition 
theorem suggested the segregation of a vector field, defined on 
real domains, into the solenoidal and the irrotational components. 
While the Hodge decomposition talked about a third component 
that is harmonic and is both solenoidal as well as irrotational. 
This decomposition theorem was defined for differential forms 
on Riemannian manifolds. Thus, the Hodge decomposition is the 
differential form analog of the Helmholtz decomposition in vector 
analysis. To the best of our knowledge, there is no origin of the 
Helmholtz-Hodge theorem or some formal merging of the names 
Helmholtz and Hodge.

The HHD technique that we adopted for decomposition is 
addressed in the next section. The approach was applied on to 
random fields in which both positive and negative curvatures were 
added. Spherical waves with positive and negative divergence, 
random wave fronts containing vortices with curling phase 
gradients, a vortex lattice field resulting from the superposition 
of plane waves were some of the fields that were investigated 
to test our HHD method. All the results showed clear explicitly 
segmented data and proved that our method worked really fine 
with scalar optical fields. We also believe that this method will 
definitely augment the flow visualization of velocity, pressure and 
temperature using optical methods. This technique can also be 
applied to process data fields as in medicine. It was anticipated 
and later seen that HHD using our least squares approach yields 
good results when applied to Magnetic Resonance Elastography 
(MRE) in human brain tissues. There are various methods to 
measure tissue elasticity that are used worldwide. Majority of 
them use sophisticated hardware and software and are not really 
cost effective. But our technique is very simple and does not 
require any complicated assessments and interpretations. 
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MRE consists of measurements of mechanical properties of a 
tissue using the Magnetic Resonance Imaging (MRI). An external 
actuator vibrates the tissue of interest and MRI data is obtained. 
This encodes the shear wave propagation into the MRI image. 
Tissue elasticity is then measured using wave inversion, after 
isolation of these shears waves. But the problem is ill-posed and 
extremely sensitive to denoising methods. Some noise solutions 
to sort out this issue have been used. Retaining the curl field to 
study tissue elasticity using HHD by our least square method also 
gives good results. The method has been explained in detail in the 
next section. 

Helmholtz Hodge Decomposition
The Helmholtz Hodge Decomposition (HHD) is based on the 

Helmholtz theorem [28-30], which states that a vector field which 
F  is on a bounded domain  V  in  R3, and is twice continuously 

differentiable, and whose divergence . ( )F b r∇ =  and curl 
( )F c r∇ × = are known, can be segregated into components 1

f
and 

2
f  determined by 

1 2F f f Aφ= + ⇒∇ +∇× 	  	 (2)

Where ( )rφ  and ( )A r  are scalar and vector potentials 
respectively, that can be obtained from the Poisson’s equations 

	
1 ( )( )

4
b rr dv

rV
φ

π
′= ∫ 		  (3)

      
1 ( )( )

4
c rA r dv

rVπ
′= ∫ 		  (4)

These potentials ( )rφ  and ( )A r  allow the field f to be 
segregated into the curl free and divergence free components.

The boundary conditions imposed in HHD ensure a normal 
boundary flow on the curl free component and a tangential 
flow on the divergence free component. Considering n̂  as the 
outward normal to the boundaryΩ , this implies that for a unique 
decomposition,

The irrotational component 1f  is normal to the boundary dΩ  
ofΩ , i.e. 1 ˆ 0f n× =



 , and

The solenoidal component 2f  is parallel to the boundary dΩ  
of Ω , i.e. 2 ˆ 0f n⋅ =



The method adopted to solve the HHD problem involves 
minimizing the errors in the terms which are constructed from 
the initial guesses. 1f  and 2f  are considered as the initial guesses 
for the curl free and the divergence free component fields of a 
vector field f .

 The error terms/ residuals 1f∇× , 2f∇⋅  and 1 2f f f+ − are 
then reduced to a minimum.

In Cartesian coordinate system, the difference operator 
operating on a scalar function f , is defined as

		  ˆ ˆ ˆ
ff fyx zdf x y z

x y z
∂∂ ∂

= + +
∂ ∂ ∂



	  	 (5)

Using Finite Difference Approximation, the ∂ operator can be 
written as a matrix given by

0 1 0 0
1 0 1

1 0 1 0 0
2

1
0 0 1 0

− 
 − 
 ∂=
 

− 
  



 



   



		  (6)		

This is true for 1D but for 3D, it is expanded as

,3x D m m x xI I∂ = ⊗ ⊗∂ ≈∂ 		  (7)

where mI is an m m× Identity matrix and ⊗  is the Kronecker 
delta product. Similarly,

	 ,3y D m y m yI I∂ = ⊗∂ ⊗ ≈∂ 			  (8)

	 ,3z D z m m zI I∂ =∂ ⊗ ⊗ ≈∂ 		   	 (9)

The curl, in Cartesian coordinate system, is written using finite 
difference operator matrix as

ˆ ˆ ˆ 0

0
0

x y z fz y x
f fz x yx y z

fy x zf f fx y z

 
−∂ ∂    

   ∂ ∂ ∂ ∇× = = ∂ −∂    ∂ ∂ ∂      −∂ ∂     

	 (10)

Similarly, for divergence, 

fxff fyx zf fx y z yx y z
fz

 
∂  ∂ ∂  ∇⋅ = + + = ∂ ∂ ∂   ∂ ∂ ∂  

 

Thus, the HHD can then be summarized as:

0 0 0 0 0
1 00 0 0 0
1 00 0 0 0
1 00 0 0
2

0 0 0 0 2
0 0 0 0

20 0 0 0

z y f x
z x f y
y x f z

x y z f x fxI I f y f yI I f z fI I z

−∂ ∂   
    ∂ −∂     
    −∂ ∂     
   =∂ ∂ ∂  
    
    
    
         

	 (12)

The boundary condition considered is that the fields tend to 
go to zero at infinity. By applying the above mentioned boundary 
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conditions, the system of equations can be efficiently solved. 
12 can be solved as an equation Px Q=  where P  represents

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

z y

z x
y x
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I I
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 are 

represented by x  and Q  respectively. 

Since the system of equations is not full rank, appropriate 
weights are applied to the residuals or error terms in order to get 
a unique solution. The weight parameters α, β and γ are defined 
for the curl free, divergence free and the sum residual respectively. 

Thus, one minimizes the expression ( )W Px Q−  where W is a 
diagonal matrix defined as

( )[ ]W diag α α α β γ γ γ= 		   (13)

The results obtained with the specific boundary condition are 
shown in next section. It is to be noted that the fields are assumed 
to go to zero at infinity. One clearly observes the vanishing of 
the normal component of the field in the solenoidal part and 
tangential component in the irrotational part at the boundaries. 
The boundary conditions imposed ensure a unique and 
orthogonal decomposition of the original field. The curl free part 
is the projection of the original field onto the space of solenoidal 
fields. Similarly, the divergence free part is the projection of the 

original field onto the space of irrotational fields. This is possible 
only when proper boundary conditions are satisfied. 

HHD has, hitherto, seemed to be a great technique to extract 
and detect vortices, but we were unable to determine their 
strength. Vortices of any topological charge, however high it was, 
appeared similar. Thus, this seemed to be more of a visualization 
and analyzation technique than a method for measurement of the 
strength of the singularities. 

Decomposition of Scalar Fields
In this section, the decomposition using HHD method for the 

some of the scalar fields is demonstrated. The simulation work 
has been done using Matlab. 

The phase of the beam is shown in part (a) in Figure 1 (I) 
shows a Hodge decomposed beam for a positive spherical beam. 
The computed phase gradient field is shown in part (b). Part (c) 
shows the Hodge decomposed divergence free part, while part 
(d) shows the curl free component. As can be seen, the solenoidal 
field is zero in the core area far away from the boundary in case 
of spherical beams. The normal component of the field vanishes 
near to the boundary and the field lines tend to get parallel here. 
The irrotational component shows diverging field lines emanating 
from the center. As expected, the normal component tends to be 
perpendicular at all points on the boundary. We thus visualize 
that the Orbital Angular Momentum, which is associated with 
the circulating phase, is explicitly absent, en masse, in a spherical 
wave. Speckle fields have also been decomposed and we envisage 
that HHD can be used to produce speckle free fields wherever 
required. An experimental result that was a vortex lattice field 
was considered next for decomposition and explicitly segregated 
components obtained, as shown in Figure 1 (II).

Figure 1: The Hodge decomposition applied to (I) a spherical wave with a positive divergence and (II) a vortex lattice field.

http://dx.doi.org/10.15406/jnmr.2017.05.00115
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One can, on similar lines, decompose any field obtained 
in interference / diffractive optics, and study its propagation 
dynamics and other topological features. We envisaged that 
fields in MRE where one requires the curl waves could also 
be decomposed using our technique of decomposition. We 
tried our method on brain acquisition data collected from a lab 
and obtained results. We saw that the shear waves were more 
clarified as compared to ones obtained using other methods. It 

is attributed to the fact that the HHD removes the low-frequency 
artifact that causes overestimation of wavelengths. This helps 
to reduce the noise and thus, clarifies shear waves. These shear 
waves are then inverted to create a mechanical property map that 
gives an estimation of the brain mechanical stiffness. Figure 2 (I) 
and (II) show the shear waves obtained using our HHD method 
and the inverted map to see mechanical property in brain tissues.

                           		            (I)					       	    (II)

Figure 2: The (I) clarified shear waves obtained using HHD and (II) inverted shear waves.

Conclusion
We had established that the Helmholtz Hodge decomposition 

can be used as a tool to analyze scalar fields and had demonstrated 
that the HHD can be used to segment the solenoidal and 
irrotational components in them. This has been solved in the 
rectangular coordinate system with general boundary conditions. 
The propagation of optical beams in circular cross-sectional 
channels is also of interest. The HHD method described above 
yields important results in the study of propagation of optical 
beams. The segregated component fields give a lot of insight 
into the generation and annihilation of optical vortices during 
propagation. Our HHD method has been applied on to the brain 
tissues and the clarified shear waves have been studied. These 
shear waves were more clarified as compared to the ones 
obtained using other methods. This is due to the fact that the HHD 
removes the low-frequency artifact that causes an overestimation 
of wavelengths. This helps to reduce the noise and thus, clarifies 
shear waves. These shear waves were then inverted to study the 
brain mechanical stiffness. The state of tissues at any instant of 
time is thus revealed using our method of wave separation. This 
can, hence, be used to study the state of tissues in case of treatment 
of any disease in the human body. An estimation of the state of 
health of tissues can thus be obtained using the decomposition 
technique. 
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