

Multifunctional magnetic nanoparticles-a promising approach for cancer treatments

Abstract

Magnetic (iron oxide- $\text{Fe}_3\text{O}_4/\text{Fe}_2\text{O}_3$) Nanoparticles (MNPs) play a significant role in the treatment of cancer due to their unique physicochemical characteristics including superparamagnetic behavior. MNPs can be used as

- Contrast agents in Magnetic Resonance Imaging (MRI);
- Heating agents in magnetic hyperthermia based cancer therapy.

Moreover, MNPs (after their encapsulation into polymers) can be used as smart drug carriers to transport therapeutic molecules effectively to the specific cancer sites for eradicating/inhibiting cancer cell activities locally. In addition, magnetic nanoparticles can be encapsulated into pH sensitive responsive polymers to release drugs in a precisely controlled manner in association with heat based drug release. This mini-review article provides the snapshot on the properties and/or application of MNPs in the treatment of cancer.

Keywords: Magnetic nanoparticles, Hyperthermia, Cancer cell, Contrast agents, Magnetic resonance imaging, Biomedical, Multi drug resistance, Hyperthermia Therapy, Cytotoxic drugs, Doxorubicin, Neel fluctuation

Abbreviations: MDR, Multi Drug Resistance; MNPs, Magnetic Nanoparticles; MRI, Magnetic Resonance Imaging; MR, Magnetic Resonance; SPIO, Super Paramagnetic Iron Oxide; AMF, Alternating Magnetic Field; BBMNs, Bifunctional Bacterial Magnetic Nanoparticles

Introduction

Cancer is one of the leading causes of death in the world.¹ Despite significant advances in the treatment of cancer in recent decades, it is still difficult to eradicate. Many factors contribute to its resiliency such as Multi Drug Resistance (MDR), poor selectivity for cytotoxic drugs, nonspecific bio-distribution and risk of damaging healthy cell.^{2,3} The pathogenesis of cancer involves the structural and quantitative alterations in cellular molecules that control different aspects of cell behavior.

Recently, nanotechnology (concerning particles and devices in the range of 1-100 nm dimensions) provides new opportunities in cancer therapy and diagnostics (theranostics). Nanoparticle based therapies have been shown to

1. Diagnose the tumors precisely;
2. Reduce systemic toxicities and
3. Improve therapeutic efficacy of drugs.⁴

Among various nanoparticles, Magnetic Nanoparticles (MNPs, particularly superparamagnetic iron oxide nanoparticles- $\text{Fe}_3\text{O}_4/\text{Fe}_2\text{O}_3$) are very prominent since they have unique physicochemical properties such as high magnetic saturation, bio-compatibility and excellent heating ability (when exposed to an Alternating Magnetic Field (AMF)).^{5,6} MNP-based Magnetic Resonance (MR) imaging with substantial signal enhancement can be utilized to locate the tumors for their early diagnosis.⁷ Moreover, the AMF based induced heating effect (42-45 °C) of the MNPs can be efficiently used to inhibit the actions of cancer cells or to kill them locally, which is called as magnetic hyperthermia therapy.⁸

The induced heating could be due to Neel and Brownian relaxations of MNPs in an aqueous environment. The extensively researched SPION in MRI is ferumoxtran-10, owing to its superior paramagnetic signals at low doses.⁹⁻¹² Moreover, they are also utilized in detection of metastasis of small lymph nodes and also in generation of heat under an AMF to induce death in different cancer cells. Thus, the integration of theranostics, by combining simultaneous Magnetic Resonance Imaging (MRI) and magnetic hyperthermia into a single nano-formulation via MNPs, has gained increased interest for researchers to ensure the optimal strategies for *In Vivo* cancer treatments.

Recently, MNPs based drug delivery system has gained high attention as an effective tool in cancer therapy, since it is capable of delivering the chemotherapeutic drugs into the cancer-specific site with fewer side effects as compared to the traditional delivery techniques.¹³ Apart from that, cancer specific antibodies/targeting molecules (such as folic acid) can be functionalized onto the surface of the MNPs to target the cancer cells specifically to improve the therapeutic efficacy in cancer treatments.¹⁴ Moreover, MNPs can also be functionalized with pH responsive polymers to improve the efficiency of drug delivery system, since the pH of the tissues is not constant throughout the body and it varies from tissues to tissues. For example, Zheng et al.¹⁵ developed the Bifunctional Bacterial Magnetic Nanoparticles (BBMPs-a pH sensitive and targeted drug delivery system) by coupling doxorubicin and a galactosyl ligand onto the membrane surface of the Bacterial Magnetic Nanoparticles (BMPs), where the targeted BBMPs showed higher therapeutic efficacy in HepG2 cancer cell lines.¹⁵

Conclusion

Recent developments in nanotechnology made possible to synthesize high-quality MNPs for biomedical applications. Moreover, the improved tumor-targeting ability of MNPs is also crucial for their success in cancer treatment. However, there is a need for better understanding of the interaction between the as-synthesized/encapsulated MNPs and the surroundings for designing smart drug

delivery systems to achieve effective cancer theranostics. Furthermore, the other considerations, while designing the drug delivery systems it should also include the type of cancer, the micro-environment around the cancer sites. The mode of interaction with non-targeted organs and the fate of these formulated MNPs based nano-systems in different physiological environments.

Acknowledgments

None.

Conflicts of interest

None.

References

1. Siegel RL, Miller KD, Jemal A Cancer statistics. *CA Cancer J Clin*. 2015;65(1):5–29.
2. Glasgow MDK, Chougule MB Recent Developments in Active Tumor Targeted MultifunctionalNanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging. *J Biomed Nanotechnol*. 2015;11(11):1859–1898.
3. Shapira A, Liveny YD, Broxterman HJ et al. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. *Drug Resist Update*. 2011;14(3):150–163.
4. Cheng Z, Zaki AA, Hui JZ et al. Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities. *Science*. 2012;338(6109):903–910.
5. Maity D, Zoppellaro G, Sedenkova V et al. Surface design of core-shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents. *Chem Commun*. 2012;48:11398–11400.
6. Maity D, Chandrasekharan P, Pradhan P et al. Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. *J Mater Chem*. 2011;21:14717–14724.
7. Kumar R, Korideck H, Ngwa W et al. Third generation gold nanoplatform optimized for radiation therapy. *Transl Cancer Res*. 2013;2(4):1–17.
8. Maity D, Chandrasekharan P, Yang CT et al. Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. *Nanomedicine*. 2010;5(10):1571–1584.
9. Barentsz JO, Thoeny HC Prostate cancer: Can imaging accurately diagnose lymph node involvement? *Nat Rev Urol*. 2015;12(6):313–315.
10. Shin TH, Choi Y, Kim Soojin et al. Recent advances in magnetic nanoparticle–based multi-modal imaging. *Chem Soc Rev*. 2015;44(14):4501–4516.
11. Birkhauser FD, Suder UE, Froehlich JM et al. Combined ultrasmall superparamagnetic particles of iron oxide–enhanced and diffusion–weighted magnetic resonance imaging facilitates detection of metastases in normal–sized pelvic lymph nodes of patients with bladder and prostate cancer. *Eur Urol*. 2013;64(6):953–960.
12. Seeta RRG, Benton L, Pavitra E et al. Multifunctional nanoparticles: recent progress in cancer therapeutics. *Chem Commun (Camb)*. 2015;51(68):13248–13259.
13. Jin R, Lin B, Li D, Ai H Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. *Curr Opin Pharmacol*. 2014;18:18–27.
14. Fazilati M Folate decorated magnetite nanoparticles: Synthesis and targeted therapy against ovarian cancer. *Cell Biol Int*. 2014;38(2):154–163.
15. Guo L, Huang J, Zheng LM Bifunctional bacterial magnetic nanoparticles for tumor targeting. *Nanoscale*. 2012;4(3):879–884.