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Abstract

This review article is focus on the role of nanomaterials in gas sensing applications.
Different kinds of nanomaterials have been widely used to detect toxic and pollutant gases.
The gas sensing mechanism of nanomaterials is related to surface reaction, which is highly
influenced by several factors like surface capping/ structure directing agents, modifying

morphology, catalysis, working temperature.
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Introduction

The nanoworld has been played a great role in the scientific
and technological development in universe. The discovery of
nanomaterials such as carbon fullerenes in 1985, carbon nanotubes in
1991 and ordered mesoporous materials in 1992 makes a revolution
in the field of nanotechnology . Nanomaterials can be differentiated
into various categories on the bases of their dimensionality such as
one dimensional (nanowire, nanotube), two dimensional (nanosheets),
and three dimensional (nanoparticles) etc.

Nanomaterials are one of the most studied materials because at this
level unique optical, magnetic, electrical and mechanical properties
emerge. These emergent properties have attracted the attention of
users in various applications such as catalyst, gas sensors, batteries,
optoelectronic devices, biomedical and agricultural applications .>*
Among them, specific type of nanomaterials like pure and mixed
oxides, organic based material are receiving a growing attention for gas
sensing applications during last few years because they can enhance
the sensitivity, selectivity and the response time remarkably. The
nanomaterials of wide band gap have been proven to be excellent gas
sensing materials with high response. The advantage of nanomaterials
based gas sensors over bulk can be understood as nanosize grains are
almost depleted of carriers (most carriers are trapped in surface state)
and exhibit poor conductivity than bulk in ambient conditions. Hence
when these are exposed to gas, exhibit greater conductance changes as
more carriers are activated from their trapped states to the conduction
band than with bulk sized grain. It is known that the morphologies,
particle sizes and dimensionality of nanomaterials play a key role in
observing their sensing characteristics . Among these the crystallite
size has an impact on the gas sensitivity i.e. maximum sensitivity is
achieved only if the crystallite size within the film is comparable with
its space charge layer thickness .!'"!3

The nanomaterials with different morphology like size confinement
in two coordinates also offers better sensitivity to surface chemical
reaction due to large surface to volume ratio and small diameter
comparable with Debye length .'*'7 There are many methods for
achieving the above. Generally pure nanomaterials divided into two
parts namely n-type and p-type nanomaterials. Up to now several
nanomaterials have been successfully used as sensing materials for

detecting reducing and oxidising gases by conversion of information
in terms of electrical signals when exposed to corresponding
test gas .'%2* Nanomaterials can be synthesised by following two
different approaches like bottom up approach (chemical method,
electrochemical method, sol-gel, Solvothermal etc.), in which
material is build up from bottom i.e. atom by atom and top down (ball
milling, laser ablation, lithography) in which material is synthesized
from initially bulk materials .*3? According to literature survey
many researchers have shown that the various kind of nanomaterials
including different dopant, catalysis, adhesive, binders, surfactant all
have been used to enhance the sensing characteristics of sensors made
from these materials. In addition to the above, their film fabrication
method also provides another variable for sensor design .3 As a
simple review of nanomaterials for sensing applications, this article
will focus on the principle, film deposition method and use of a range
of nanomaterials for gas sensors. This article will also focus on the
various factors that have direct impact on sensitivity, selectivity, and
response time of nanomaterials.

Synthesis of nanomaterials

Generally Nanomaterials have synthesized by approaching two
different method bottom up and top down. Both the methods have
received great attention because of their unique advantages like
prepared nanostructures with less defects, more homogeneous
chemical composition, and different range of ordering. Bottom up
approach provides synthesis of material from atom by atom, molecule
by molecule while top down provides preparation of nanomaterials
from bulk materials (Figure 1).
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Figure | Schematic representation of synthesis of nanoparticles.

Mostly bottom up approach is preferred for synthesizing
nanoparticles instead of top down. It provides uniform nanoparticles
with controlled particle size with low cost and simplicity. There are
several factors which also affects the synthesis of nanoparticles like
precursor, solvent (water, polar/non-polar organic solvents), reducing
agents (depends on the nature of precursors), capping agents/
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stabilizing agents, heat treatment, pressure effect, and pH value of
solution.

Working principle of gas sensors

Generally nanomaterials for gas sensing applications are
characterised into two types of categories like n-type nanomaterials
and p-type nanomaterials. The n-type nanomaterials have electrons
as majority charge carriers while p-type nanomaterials have holes
as a majority charge carriers. A range of nanomaterials from group
MI-VT called transition metal and their oxides with d°-d' electronic
configurations are found to have lots of characteristics for sensing
applications. The sensing behaviour of nanomaterials is based
on electrochemical changes, catalytic combustion or resistance
modulation of these materials. Metal oxide sensors are used based on
the principle of gas adsorption on the surface that leads to a change
in the electrical resistance or conductivity of these nanomaterials. The
gas sensing mechanism of metal oxide nanomaterials gas sensors is
complex and basically depends upon the adsorption/ desorption of test
gases on their surfaces >3-

Sensing mechanism

The gas sensing mechanism of nanomaterials for gas detection is
quite complex to explain and is based on the resistance change due to
the chemical and electronic interaction between the test gas and the
nanoparticles. This complexity occurs due to the various influencing
parameters like chemical composition, temperature, humidity and
modified surface morphology. The sensing mechanism includes
the adsorption ability, surface properties and catalytic effect. For
sensor devices made up of n- type nanomaterials, when come into
air environment, the oxygen will interact with such nanomaterials
and capture the electrons from the conduction band of it to generate
anionic species on the surface of sensor materials .7 This will
result in an electron depletion layer which enlarges electron transport
barrier between nanoparticles. Thus, the anionic species adsorbed
on the surface of nanomaterials sensor influences the resistance or
conductance of nanomaterials based devices. During adsorption of
Oxygen on the surface of nanomaterials, three types of stable oxygen
anions namely O%*, O, O* generates .>** The whole reaction is given
in steps as below:

O (gas) «» O {advorbed )
Q2 (adsorbed) + &+ O (ads)
(O (ads)+e¢ = 20 (ads)

O (ads) + & «» O (ads)

In the presence of test gas, the gas molecules will react with the
adsorbed anionic species at the surface of nanomaterials and release
the trapped electrons back to nanomaterials conduction band which
leads to a reduced electron depletion barrier and contracted electron
transport barrier . The reverse is true for p-type nanomaterials.

Experimental set-up and fabrication of sensor devices

For gas sensing measurement, as synthesized nanomaterials are
mixed with suitable organic solvent and deposited on a conducting
substrate like Indium Tin Oxide coated glass plate, Alumina substrate
with conducting electrodes and printed circuit board in the form of
thin or thick film as shown below in Figure 2.
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Such type of films are made via using spin coating method,
screen printing method and electron beam deposition method. After
being ready, the sensor device (thin or thick film) is placed in the
test chamber of the measuring system and measure the resistivity or
conductivity of the sensor device in the absence and presence of the
test gas as shown in Figure 3.

Figure 2 Glass substrate with inter digitated electrodes for making gas sensor.
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Figure 3 Schematic representation of gas sensing setup.

The measuring system consists of a gas sensing chamber, test
gas or their mixtures, power supply, heater and the keithley source
measure unit. The gas sensing chamber has two valve inlet and outlet
valves. The inlet valve is connected to gas and the outlet valve is
connected to an air pump to exit the test gas away.

Applications in gas sensing devices

During last few decades, the use of several kinds of gases in
different areas like domestic, industries, food packaging, laboratories
are creating a severe scene for us due to excess of these. So it is
necessary to develop a device which is useful in detection of toxic
and harmful gases. Many efforts have been done for developing such
devices. But nanomaterials are playing a great role in developing
these devices due to its potential applications. The sensing mechanism
is based on changes in electrical resistance or conductance of
nanomaterials due to chemical interaction in between the gaseous
species and the nanomaterials. The charge transfer process induced by
chemical interactions determines the resistance of the nanomaterials.
If the nanomaterials are n-type the resistance decreases in presence
of reducing gases such as Methane, Liquefied Petroleum gas (LPG),
Ammonia gas (NH,) while that of increases for p-type nanomaterials.

Different nanomaterials with various morphologies produced
by using various synthesis processes were tested for reducing gases
.% Zinc Oxide nanorods produced by hydrothermal method were
tested as LPG sensors .® It was found that ZnO nanorods provide
a good response to LPG and enhancing the response of those using
zinc stannate micro cubes. The sensor response was found to be
temperature dependent and exhibited maximum at 250°C

The role of ZnO nanomaterials and their nanocomposites have been
investigated for gas sensing application. Different ZnO nanostructures
like nanowires, nanobelts and tetrapod have been prepared and
used for analysing sensitivity to H,S and NO gases. The effect of
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different nanostructures on response of n-type semiconductor ZnO to
both shows that the response to H,S arises due to changes in grain
boundary resistance while the response to NO arises due to changes
in both intragrain and grain boundary resistances. The response of
these structures to 4 ppm of H,S shows that tetrapod have maximum
while polycrystalline material has minimum sensitivity to H,S. The
films made up of tetrapod were found to be sensitive to 1 ppm due
to oxygen vacancies and defects in lattice which create adsorption
sites for oxygen .>* Several literatures reported that the use of catalyst
or promoters because of good dispersion to the nanomaterials is the
most effective way to enhance the sensitivity of nanomaterials .66
Ag NP embedded ZnO nanorods developed by photochemical method
were investigated for ethanol sensing .® Ag—ZnO nanorods exhibited
enhance response to ethanol at 10 ppm than pure-ZnO nanorods. The
Ag-ZnO nanorods were also found to be highly selective for ethanol
in between the mixture of Ethanol (C,H,OH), hydrogen (H,), methane
(CH,), ammonia (NH,), methanol (CH,OH), formaldehyde (HCHO),
carbon monoxide (CO) and acetone (CH,COCH,) (the concentration
of all these gases was 50 ppm).

One dimensional nanomaterials are very promising sensors, and
some of their results have shown that the devices based on one-
dimensional nanostructures have great potential in overcoming the
fundamental limitations of traditional nanomaterials based on sintered
particles or thick-films such as low sensitivity, poor stability and high
working temperature .%7' Aligned zinc oxide nanorods synthesized
via a two-step solution approach on an Al O, tube were exhibited
responses of 18.29 and 10.41 to 100 ppm ethanol and hydrogen,
respectively, which occurs due to larger effective surface area of the
aligned nanorods .7

Tin oxide based nanomaterials have received a great attention
in the fabrication of gas sensors devices. Pure tin oxide and their
composites have been used for reducing gas sensors .>7* Pure
SnO, by sol-gel method and their mixture with CuO, Ag,0, AL,O,, and
La,0, by hydrothermal route with average particle size of 6 nm were
prepared to study the characteristics of LPG gas. The CuO 2 wt%
doped SnO, 5 wt% exhibited better gas sensing properties with good
response time (15s) and recovery time (30s) in comparison to pure as
well as other doped composites of it .” The SnO2 NWS were grown at
980°C on Si substrates deposited with Au catalyst while hierarchical
SnO, nanostructures were produced at 800°C with Sn powder as the
source. Hierarchical SnO, nanostructures have enhanced sensing
performance to LPG and NH, gases in comparison with SnO, NWs
. This is due to high porosity, more active sites and addition of core-
outer junctions to the materials.

Generally pure oxide nanomaterials based gas sensors need to
be operated at relatively high temperatures rendering their practical
application difficult. To overcome this problem among all the surface-
reacting materials, carbon nanotubes (CNTs) having unique geometry
and amazing structural features appear as a potential candidate for
gas sensors .”° For enhancing the response and lowering the working
temperature of nanomaterials, many efforts have been made. Since
Last few years, carbon nanotubes (CNTs) have been used due to its
unique geometry and amazing structural features appear as a potential
candidate for gas sensors .”>7* Nguyen Duc Hoa et al. ”* reported simple
method to fabricate an ammonia gas sensor with a nanocomposite of
single-walled carbon nanotubes (SWNTs) and SnO, with fast response
time of ~100 s and quick recovery behaviour. The composite sensor
can detect the concentration of NH, down to the 10 ppm level at room
temperature and atmospheric pressure.

Tungsten trioxide nanomaterials have also received great
attention for gas sensing applications. Pure WO, nanomaterials and
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their composites with modified morphology have been used for
the detection of reducing gases. Xiang Q et al. ”® reported a special
method for uniformly attaching monodispersed Au NPs onto the
surface of WO3 nanorods for H, gas sensing. These sensors show
highest response to 50ppm H, at 290°C in a mixture of several kinds
of reducing gases (H,, CO, C,H,OH, CH,OH, HCHO, NH,) with
good response (8 s) and recovery time (10 s) to which confirms a high
selectivity and response sensitivity of H, on the Au NP @WO, NR
composite .”* In addition stability is also a measure factor which must
be considered and verified as being acceptable to be used for practical
application. These exhibited high long term stability in their response
and selectivity for detecting H, gas.

WO3 thick films prepared by screen printing method were
investigated at different operating temperatures and gas concentrations.
These thick films exhibit excellent LPG sensing properties with
maximum sensitivity 133% at 400°C with fast response and
recovery time and can be reliably used to monitor the concentration of
LPG over the range (25-100 ppm) .7

SnO, activated Cr,O, thick film is also investigated to sense Ethanol
and LPG gas.”” Instead of pure sensor the sensing response to ethanol
is found to be two times for SnO, activated Cr,O; thick film sensors.
The addition of tin chloride solution on the sensor surface brought
maximum reduction in activation energy of base materials and hence
enhancing the sensing response to ethanol. The ethanol gas sensing
reaction occurs under two different ways i.e. either dehydration or
dehydrogenation process due to acidic nature or basic nature of sensor
material respectively.”®” Organic materials, such as poly pyrrole
(PPy), poly aniline (PANI), and metaphthalocyanines, have been used
for enhancing the gas sensing characteristics for a long time.**** These
materials provide long response time due to the orderly structure
hinders. Organic materials doped nanomaterials like Poly Aniline
(PANI), Poly Aniline/Titanium dioxide (PANI/TiO,), Poly Aniline/
Tin Oxide (PANI/SnO,) and Poly Aniline/thin films developed by in-
situ self assembly method were also investigated for NH, gas sensing
application .* PANI/TiO, nanocomposite thin film sensor showed
optimum NH, gas-sensing characteristics rather than pure organic
material based thin film sensor and their other composites. PANI
doped nanocomposite thin film sensors have shown faster response/
recovery rate, higher sensitivity, better reproducibility and long-term
stability. Such characteristics reveal that PANI nanocomposite thin
film sensors are highly potential candidates for NH3 detection, and
perspective for electronic nose application.

Many reports are focused on nanomaterials hetero junctions i.e.
two layer type nanomaterials development to sense different gases
858 The amorphous/porous nature of the silicon deposited by the
plasma enhanced chemical vapor deposition technique was used
under bias condition to enhance the sensitivity towards ethanol and
water vapors .* A higher temperature sensor was reported by Ling and
Leach towards humidity and NO, using a SnO,/WO, hetero junction
in pellet form .*¢ Transparent oxides p—n hetero junction diodes based
on SrCu,0,~ZnO were fabricated with post-annealing treatment at
923K and the effect of H, and CO gas introduction on the current—
voltage characteristic was studied by Nakamura et al. ¥ Recently, a
few reports have emerged for room temperature LPG sensors based
on electrochemically deposited p-poly aniline with n-CdTe deposited
by the electrochemical method .* Ladhe RD et al. * was used room
temperature soft chemical route for producing n-Bi,S, films followed
by p-CuSCN films onto Fluorine doped Tin Oxide (FTO) coated
glass substrates for LPG gas sensor at room temperature. The device
exhibited more than 70% response at 1370 ppm of LPG because
upper porous structure allowed enough room for the gas species to
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adsorb and de-adsorb easily at the interface .* The nanocomposites
of ZnO with CdO synthesized by sol-gel pyrolysis method based
on polymeric network of polyvinyl Alcohol (PVA) of nanograin’s
diameter varying from 70 to 90 nm were used for CO gas detection.
Such nanocomposite exhibits good ability to detect CO gas .

One-dimensional (1D) nanostructures (nanowires, nanotubes,
nanorods) have received considerable attention due to their unique
properties and novel applications and can be developed including
VLS (Vapor-Liquid-Solid), SLS (Solution-Liquid-Solid), template-
based synthetic approaches and laser ablation .”'** Dang Thi Thanh
Le et al. * reported preparation of TiO, nanowires by a hydrothermal
process in KOH solution for LPG gas sensing analysis. The obtained
nanowires diameter of ca. 10-20 nm and length of ca. 700-800 nm
exhibited good response to LPG concentrations of 500, 1000, 2000,
4000 and 8000 ppm at operating temperature of 400°C .

Detection of volatile organic compounds is important since these
are used in many fields like chemical industries, laboratories which are
very harmful for living species. Many researchers have also focused
on developing to sense these harmful organic compounds at low
concentrations. Al-doped ZnO thin films prepared by chemical spray
pyrolysis were used as methanol sensors. Al- doped ZnO thin films
show high sensitivity to methanol vapor in compare to undoped ZnO
film at 275 C to 500 ppm with fast response and recovery time .** A
novel ZnO porous nanosolid with a very uniform pore size fabricated
by hydrothermal hot-press method were also used for analysing
sensing applications towards several organic vapors .”7

Wang HC et al. *® reported the method of fabrication of SnO, thin
film gas sensors towards methyl alcohol vapors operating at room
temperature. The sensors exhibit ultra-fast and reversible electrical
response (t90% [15 s for response and (11 s for recovery) at room
temperature. . The particle size of the hydrolyzed SnCl4 affects the
sensitivity of the sensors, but does not have much effect on their
response time. The responses of sensors prepared from the precursor
solutions with the colloid particle size of 6.0, 30.3,49.2 and 319.9 nm
were found to be 241, 318, 363 and 326, respectively. These sensors
show fast electrical response and were highly reversible for both the
sensing and the recovery process irrespective of the particle size .%
Thorsten Wagner et al. * synthesized the ordered mesoporous SnO2
powders with large specific surface area by using Cetyl Trimethyl
Ammonium Bromide (CTABr) as a structure-directing and used for
the preparation of gas sensors by application to commercial sensor
supports. Such a materials show a fast and intense response to low
concentrations of CO as well as a remarkably strong insensitivity
against humidity.

Babita Baruwati et al. '’ reported Highly crystalline zinc oxide
(ZnO) nanoparticles prepared via hydrothermal route at 120°C over
a range of different time period .'” were used for sensing of reducing
gases like Liquefied Petroleum Gas (LPG), Ammonia, Hydrogen,
Ethanol (EOH), etc. These nanoparticles show high sensitivity to LPG
and Ethanol at relatively low operating temperatures. Palladium is
known to have a catalytic effect due to its excellent oxidation capability
to convert hydrocarbons at lower temperatures .'°' making the sensor
selective to hydrocarbons. In Pb-ZnO nanoparticles barrier is formed
at the interface that is fully characterized by the electron affinity. Pd
incorporation with ZnO results in a decrease in operating temperature
by more than 100°C, and improves the sensing characteristics in terms
of response and recovery times.

Undoped and Sb-doped needle-shaped ZnO nanoparticles produced
by vapor condensation method were investigated for Volatile Organic
Compounds (VOCs), benzene, toluene, xylene, acetone and alcohol,
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as a function of temperature. The doping of Sb to ZnO nanoparticles
modified the morphology of the doped materials from needle shape
to polygon which is found to be greatly useful in improving the gas
sensitivity .!%?

ZnO thin films prepared by sol—gel dip coating method were also
used for investigating gas-sensing properties of the multi-layers for
alcohols with different chain lengths (Methanol, Ethanol and Propyl
Alcohol vapor) . The film of these nanomaterials was sensible to
Methanol, Ethanol and Propyl Alcohol vapor as low concentration as
1, 10 and 0.5 ppm, respectively. This film shows with good sensitivity
to the test gases with quick response—recovery characteristics, i.e., the
sensitivity of the film to 10 ppm gases is 2.1, 5.1 and 18.1 to Ethanol,
Methanol, and Propyl Alcohol vapor.

Komilla Suri et al. .'™ reported that magnetic nanomaterials and
their nanocomposites were also play a great role in gas sensing
applications .2* Nanocomposites of iron oxide and poly pyrrole
fabricated by simultaneous gelation and polymerisation process were
analysed for humidity gas sensing application. These nanocomposites
were showing the increment in response with increasing poly pyrrole
concentration. These sensors were also investigating for CO,, N, and
CH, with varying pressure. According to the above these were highly
sensitive according to the following order CO, . This happened
due to variation in kinetic diameter of the gas molecules having the
order CO,<N,<CH, .'"™

Weber IT et al. '*° reported a pechini method for preparing SnO,.
Nb,O, powder in nano range for an Ethanol vapor sensor. The use of
Nb, O, inhibits the particle growth and also to increase the conductivity
of SnO, and hence improved the sensing performance.'” Ji Haeng
Yu et al.'% reported the ZnO-SnO, composites for CO gas sensing.'*
He explained that SnO,-rich samples as well as ZnO rich samples
are more sensitive to CO gas than pure materials. This is happened
due to more porous microstructures. He also reported that CuO and
ZnO doped SnO, nanocomposites for CO gas detection. CuO and
ZnO doped SnO, gas sensor were prepared by ball milling method to
detect CO and H, gases .'”” The CuO added SnO, sensor show good
sensitivity to 200 ppm CO with varying concentration of CuO. Pure
SnO, exhibits maximum sensitivity at 350°C while addition of CuO to
it reduces the operating temperature 150-200°C. The addition of ZnO
into the CuO doped SnO, slightly shifted the H, gas sensing curve to a
higher temperature while detect the CO relatively at low temperature.
ZnO and Sb doped ZnO nanoparticles produced by sol-gel method
investigated for O, and CO, gas sensing were reported by Kashyout
AB, et al. ' The gas sensitivity was higher for O, gas than CO,, and
the sensitivity improved to Sb doping with maximum enhancement at
Zn:Sb (93:7) .'% Hence there are various types of nanomaterials which
play a role in gas sensing.

Conclusion

Inthisreview, we discuss the synthesis of nanomaterials, importance
of nanomaterials in gas sensor devices, working principle and their
sensing mechanism. Several kinds of nanomaterials have been used to
detect a range of toxic, hazardous gases. Both nanomaterials and their
nanocomposites are responding to both types of gases (reducing and
oxidising gases). Composite nanomaterials show better sensitivity
to the target gas than the pure nanomaterials at optimum working
temperature. Many efforts have been done to enhance the sensitivity
like by using good catalyst, surface capping/ structure directing agents,
modifying morphology etc. Porous nanostructures with high surface
to volume ratio of nanomaterials seem to be useful for gas sensing.
These nanostructures have lots of active sites with pores among them.
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Since the gas sensitivity also depends upon the nano particle size. It is
also showed that the sensitivity is enhanced by reducing the grain size.
Working temperature is also a major issue in gas sensing analysis. Pure
nanomaterials are sensible to target gases at high temperature (150-
450°C). So, it is necessary to reduce the working temperature and
enhance the sensitivity of nanomaterials. Usually carbon nanotubes/
graphenes are used to keep a balance in between lowering the working
temperature and enhancing the sensitivity. Besides these, Humidity
also affects the gas sensitivity of nanomaterials which is removed by
heating the sensor device at optimum temperature.
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