Biotechnology in nutrition and food engineering

Abstract

Biotechnology encompasses the basic and applied sciences of living systems and their engineering aspects required to exploit their bioprocesses to bring products to the market place.

While understanding of bioprocess technology has rapidly advanced in recent years, man has been practicing biotechnology since prehistoric times. Today biotechnology has moved beyond local production of alcohol or fermented foods to the production of bio-ingredients and refined products and it has a tremendous potential for further increasing food production, improving food raw materials and producing ingredients that will improve human health.

It should be understood that biotechnology is a collection of techniques some of which may involve genetic engineering for the production of genetically modified foods (GMO).

Since “biotechnology” can include numerous processes and applications, the term “genetically modified” is applied only to products that have been genetically engineered.

Genetically modified foods (GMO) have been hailed by some people as an indispensable tool for solving the world’s food problems, and denounced by others as potentially catastrophic dangers on several grounds, including safety issues, and environmental concerns.

Keywords: food biotechnology, food bio ingredients, functional foods, agriculture biotechnology, food enzymes, bioconversion, genetic engineering, genetically modified foods

Abbreviations: GMO, genetically modified foods; GRAS, generally recognized as safe; FDA, food and drug administration; USDA, united states department of agriculture; EPA, environmental protection agency; APHIS, animal and plant health inspection service

Introduction: historical perspective (Table 1)

Biotechnology refers to the use of living organisms to make useful products, and overlaps with bioengineering and industrial microbiology.1

Biotechnology has been unwittingly used for several thousand years, initially in the area of food production and preservation as exemplified by the early production of alcoholic beverages and bread using microbial “contaminants. Our early ancestors used fermentation without knowing the existence of microbial life. Egyptians were brewing beer and producing baked products by the 4th millennium BC. Distillation of ethanol was developed and applied in China in the 2nd millennium.

The modern biotechnology developed from the 19th century after the discovery of microbiology and microbial life. Today, modern fermentation is still based on the principle of combining living matter (microorganisms) with nutrients under controlled conditions to produce high yield of the desired end products.

In the first half of the 20th century World War 1 drove the development of the first large scale fermentation processes outside of alcohol production, the acetone and butanol process for the production of explosives and the citric acid fermentation in response to the disruption of Italian citrus exports. The pressures of World War 2 brought us antibiotic fermentations in the form of penicillin and then streptomycin.

In the 1980s, recombinant gene technology led to the production of insulin for diabetes, rennet enzyme for cheese production3 and genetically engineered yeast for baking.6,7 These genetically engineered bio ingredients were the first products manufactured using recombinant technology.

Today genetically engineered microorganisms for the production of vitamins, organic acids, amino acids, sweeteners, edible oils and nutritional supplements can be developed from the insertion of a functional gene (DNA) into a host such as Lactic acid bacteria2 are a Gram positive bacteria present in fermented foods and are identified as Generally Recognized As Safe (GRAS).

These lactic acid bacteria and probiotic microorganisms in fermented foods have been used for many years for health reasons and are now an attractive alternative for treating of intestinal disorders and seem to influence the immune system via stimulating protective immune cells. Through genetic engineering, it is possible to strengthen the effect of existing probiotics,5 strains and create completely new probiotics7 with multiple health benefits These natural or genetically engineered beneficial bacteria might alter the ratio of “good to bad bacteria “that inhabit the intestine, and might specifically block activity of food borne pathogens to prevent of gastrointestinal diseases.

Biotechnology, including genetic engineering technology, is going to play an important role in the production for functional foods.
Functional foods also known as Nutraceuticals10 are going to become preventive medicines and might help tackle health related issues. For example, it is widely believed that omega-3 fatty acids are beneficial against cardiovascular diseases.

In addition, genetically engineered technology has resulted in worldwide significant changes in plant11,12 and livestock13 production that will affect all steps of the production chain from agrochemical inputs and breeding to final food processing.

Because biotechnology process (fermentation) uses living materials, they offer several advantages over conventional chemical process (synthetic chemistry). Biotechnology can use renewable resources as raw materials and can operate at lower temperature, pressure and pH to produce high yield of end products with less energy consumption and cost.

In the most of biotechnology processes enzymes in whole microorganisms or extracted from cellular components are used to catalyze the biochemical reactions for the production of desired bio-products that have applications in food processing, functional foods, food supplements, pharmaceuticals, chemical industry, diagnostics, environmental cleanup, etc.

Enzymes are catalysts that can convert raw materials (substrates) to form desired end products.14 These enzymes carry out the bioconversions. Early in the discovery of bioconversion process, three major challenges were present that are resolved by newly developed advanced technologies.

<table>
<thead>
<tr>
<th>Year</th>
<th>Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000 BC</td>
<td>Wine making developed in Eastern Mediterranean</td>
</tr>
<tr>
<td>7,000 BC</td>
<td>Beer developed in Egypt and Babylon</td>
</tr>
<tr>
<td>5,000 BC</td>
<td>Cheese making and some medicinal plants were developed</td>
</tr>
<tr>
<td>4,000 BC</td>
<td>Vinegar was referenced in old testament</td>
</tr>
<tr>
<td>500 AD</td>
<td>Algae was cultivated for food consumption by Aztecs</td>
</tr>
<tr>
<td>500 AD</td>
<td>Yogurt, Sauces and fermented foods were developed</td>
</tr>
<tr>
<td>1600</td>
<td>The name fermentation was used</td>
</tr>
<tr>
<td>1600</td>
<td>Van Leeuwenhoek observed yeast cells in alcohol fermentation</td>
</tr>
<tr>
<td>1781</td>
<td>Pressed Baker’s yeast produced by Dutch (this is the first improved process)</td>
</tr>
<tr>
<td>1789</td>
<td>Jenner demonstrated ability to confirm the resistance to smallpox infection by vaccination</td>
</tr>
<tr>
<td>1837</td>
<td>Cagniard-Latour; Schwann and Kutzin independently hypothesized that yeast is a living thing (this is the first knowledge on cell theory)</td>
</tr>
<tr>
<td>1847</td>
<td>Blonndeau studied fermentation of lactic acid, butyric acid, acetic acid and urea. He hypothesized that different fermentations carried out by different fungi</td>
</tr>
<tr>
<td>1870</td>
<td>The first experimental corn hybrid is produced in a laboratory</td>
</tr>
<tr>
<td>1875</td>
<td>Pasteur demonstrated that living yeast cells ferment sugar into ethanol and carbon dioxide</td>
</tr>
<tr>
<td>1859</td>
<td>Darwin published the Origin of Species</td>
</tr>
<tr>
<td>1877</td>
<td>Pasteur noted relationship between microorganisms and infection diseases (this is the first knowledge on pathogenic organisms)</td>
</tr>
<tr>
<td>1881</td>
<td>Koch developed techniques for the handling and maintenance of cultures (this is first modern industrial microbiology techniques)</td>
</tr>
<tr>
<td>1881</td>
<td>First commercial production of lactic acid by anaerobic fermentation</td>
</tr>
<tr>
<td>1894</td>
<td>Takamine patented process to isolate diastase enzyme from mold that break starch (this is the first knowledge on enzymes and its application)</td>
</tr>
<tr>
<td>1916</td>
<td>Germany produces baker’s yeast grown on molasses as protein supplement. Also, produced glycerol by yeast fermentation</td>
</tr>
<tr>
<td>1911</td>
<td>American pathologist Peyton Rous discovers the first cancer-causing virus</td>
</tr>
<tr>
<td>1918</td>
<td>Great Britain produces acetone and butanol by anaerobic fermentation process</td>
</tr>
<tr>
<td>1923</td>
<td>Commercial production of citric acid by surface culture</td>
</tr>
<tr>
<td>1929</td>
<td>Fleming demonstrated that mold contaminant in a Petri-dish causes bacterial death. This is the first discovery of antibiotics</td>
</tr>
<tr>
<td>1933</td>
<td>Hybrid corn is commercialized</td>
</tr>
<tr>
<td>1934</td>
<td>Gautheret successfully cultured plant cells</td>
</tr>
<tr>
<td>1940</td>
<td>Florey and Chain isolated penicillin, elucidated its structure and demonstrated its ant-bacterial properties</td>
</tr>
<tr>
<td>1940</td>
<td>Waxman discovered streptomycin’s</td>
</tr>
</tbody>
</table>

Citation: Ibrahim OO, Day DF. Biotechnology in nutrition and food engineering. J Nutr Health Food Eng. 2014;1(5):161–164. DOI: 10.15406/jnhfe.2014.01.00026
The production of Cortisone at the cost of $200/g (now it's cost is $16/g)
The production of polio and peruses vaccines
Artificial insemination of livestock is accomplished using frozen semen DNA is made in a test tube for the first time
The first synthetic antibiotic is developed

The production of Xanthus gum
The production of alkine protease for detergents industry
The discovery of glucose isomerase and the production of high fructose corn syrup (HFCS) as a sweetener
Human growth hormone is synthesized for the first time
Recombinant human insulin is produced for the first time
Kohler and Milstein developed monoclonal antibodies
The production of poly (hydroxybutyrate)
The U.S. Supreme Court approves the principle of patenting organisms
Smallpox is globally eradicated following 20 years mass vaccination effort
The first recombinant DNA vaccine for livestock is developed
The first transgenic animals by transferring genes from other animals into mice
Interferon the first anticancer drug produced through biotechnology
The first pest resistant corn (Bt corn) is produced
The first recombinant vaccine for human (hepatitis B) is approved by FDA
The production of amino acids (lysine, threonine and isoleucine)
The production of antibodies
The production 1,2-propanediol
The first successful gene therapy is performed on a 4 years girl suffering from immune disorder
The first breast cancer gene is discovered
FDA approves bovine somatotropin (BST) for milk production increase in dairy cows
Gene associated with Parkinson's disease is discovered
A sheep named Dolly in Scotland becomes the first animal cloned from an adult cell
Diagnostic test for quick identification of BSE and CJD is developed
The first genetically engineered crop is commercialized
The production 1,2-propanediol
The production of xylitol.
The production of hydroxpropanoic acid
Kenya field test for the first biotechnology crop (virus resistant sweet potato)
FDA approves the first transgenic rootworm resistant corn
Comletes sequencing human genome
UN Food and Agriculture organization endorse biotechnology crops
FDA approves the first antiangiogenic drug for cancer
FDA approves the first recombinant vaccine against human papillomavirus (HPV)
USDA grants the first regulatory approval for a plant made vaccine
FDA approves the first H5N1 vaccine for avian flue
Global biotechnology crops acreage reaches 330million acres
FDA approves the first genetically engineered animal for the production of rh antithrombine

The creation of the first synthetic cell
Advances in 3-D printing technology leading to skin printing
Advances in stem cell technology

First challenge
Maintaining the desired optimum conditions (temperature, pressure, pH, oxygen levels, etc.) for the bioconversion process.

Solution: The development of automated and computerized equipments to assist in maintaining the desired optimum conditions for bioconversion process and monitoring the reactions. These instruments improved the bioconversion efficiency and increased the end-product yield.

Second challenge
The formation of unwanted impurities during the bioconversion process resulted in difficulties to produce the end- products in pure forms.

Solution: The development of separation and purification techniques for downstream process resulted in methods to economically produce highly pure end-products with higher recoveries.

DOI: 10.15406/jnhfe.2014.01.00026
Third challenge

The cost of catalytic enzymes used in the bioconversion process resulting in higher production cost.

Solution: The developments of Immobilized enzymes and cells systems for both continuous and semi-continuous bioconversion process have dramatically reduced the production cost of end products.

Food biotechnology regulation15–18

Food biotechnology is regulated under the same United States laws that govern the health, safety, efficacy and environmental impacts.

Regulatory control on food biotechnology is the responsibility of three federal agencies:

The food and drug administration (FDA)

Regulates novel substances in foods and feeds on the basis of dietary risk evaluating food safety, allergy, and toxicity. The FDA has the right to ban any biotechnology food product that it determines is unsafe.

The United States department of agriculture (USDA)

Regulates genetically engineered plants under Animal and Plant Health Inspection Service (APHIS), it is assessing the impact of developed genetically engineered plant on the agriculture industry or the meat processing industry.19

The environmental protection agency (EPA)

Evaluates genetically engineered plants for environmental safety and evaluate risk assessments for potential harm to human and animal health. EPA is also, responsible in establishing tolerance and residue levels for pesticides in fruits and vegetables.

Future perspectives of bioprocess industry

Today, the biotechnology industry has reached a rapid growth phase based on a broad understanding of genomics, proteomic, bioinformatics, genetic transformation and molecular breeding. These technologies are now being transferred to large scale biotechnology operations.

It is expected that genetically engineered hosts, such as insects, stem and plant cells, and transgenic plants or animals sooner or later will reach broader applications in the production of new bio-ingredients, with applications in both food and pharmaceutical industries.

The use of extreme-thermophilic microbes in recombinant technology will yield unique enzymes active at high temperature as biocatalysts in non-aqueous solutions and broaden the technology platform to produce reservoir of new bio-products with wide applications in medicine, food, agriculture, environment, energy and chemical industries.

Today food biotechnology has a tremendous potential for increasing food production and improving food nutritional value, flavor and texture of food products. In addition, it has the potential for the production of newly food bio ingredients that will improve food processing and producing functional foods as a preventive medicine.

In the future innovations in biotechnology will continue bringing exciting new advances to improve the life of human beings on earth.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

14. punkvijay.blogspot.in/2010/10/bioprocess-introduction_1893.html